COMP-ECO

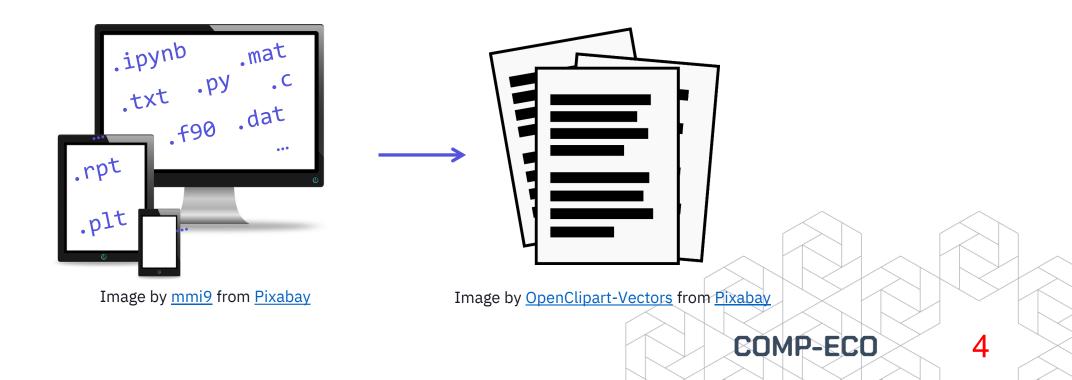
Research Data Management and Data Management Planning

Dr. Heather Andrews Mancilla, h.e.andrewsmancilla@tudelft.nl Data Steward Faculty of Aerospace Engineering Delft University of Technology January 30th, 2024

Go to menti.com

Let us talk about data

Let us start writing a Data Management Plan



WHAT DO WE CONSIDER AS 'DATA'?

All research output necessary to validate and reuse the results of a project

Raw data

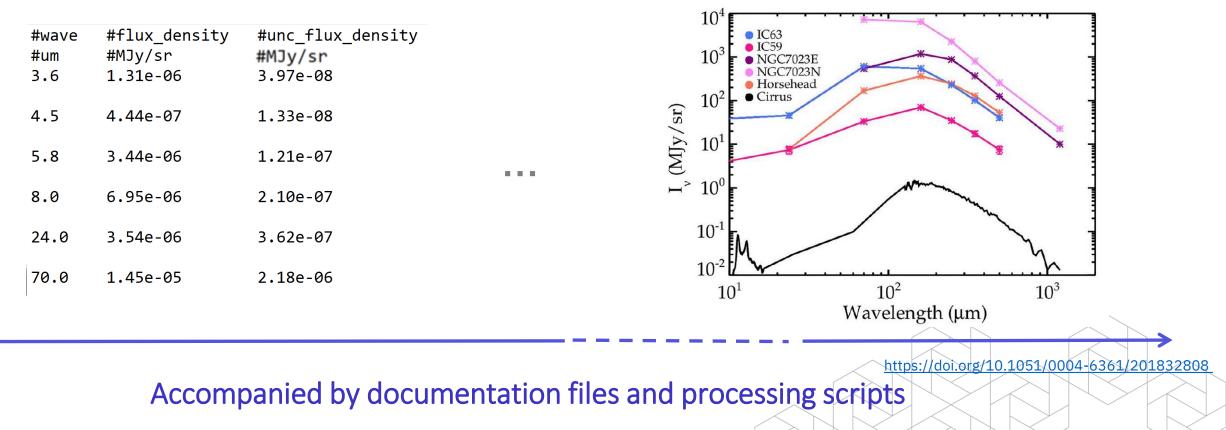
ile		SAOImage ds9 SPITZER_IC63_MIPS24um.fits								• • •	SAOImage ds9											
le bject		SPITZER_	IC63_MIPS	24um.fits								File		SPITZER_IC63_MIPS24um_160res.fits								
alue									Y			Object Value	brc4a					_				
								E				value	-							Friday -		
hysical)	د	У									Physical	x	У								
mage		·	У		_								×	у								
rame 1		< 8		0									×	8	0	•						
	edit	view	frame	bin	zoom	scale	color	region			help	file edit	1	view frame	bin	zoom	scale	color	region	wcs	analysi	sis
grey		a	b	bb	he	i8	aips0	heat	cool	rainb	wow	open		save		header		page setup		print		ex
														١								

Processed data #2

#wave #um 3.6	#flux_density #MJy/sr 1.31e-06	<pre>#unc_flux_density #MJy/sr 3.97e-08</pre>
4.5	4.44e-07	1.33e-08
5.8	3.44e-06	1.21e-07
8.0	6.95e-06	2.10e-07
24.0	3.54e-06	3.62e-07
70.0	1.45e-05	2.18e-06

Accompanied by documentation files and processing scripts

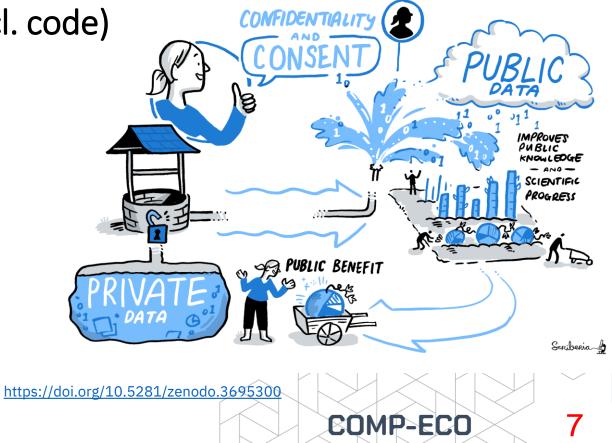
Processed data #1


COMP-ECO

Processed data #2

Finalized data

COMP-ECO



WHAT IS DATA STEWARDSHIP?

It is about taking care of data (incl. code)

Data type Policy and regulations Tools and software Storage and access Backups Transfer and exchange Publishing and archiving

During research and after research... Findable – Accessible – Interoperable – Reusable

Funded by the European Union

Avoid data breaches and data losses

Funded by the European Union

> Avoid data breaches and data losses Make the data/code understandable

During research and after research... Findable – Accessible – Interoperable – Reusable

Funded by the European Unior

> Avoid data breaches and data losses Make the data/code understandable Make the research reproducible and/or replicable

WHAT IS A DATA MANAGEMENT PLAN (DMP)?

Funded by the European Union

LET US DRAFT A DMP!

- Think about a research project
- Go to dmponline.dcc.ac.uk

Plan to make data work for you

Data Management Plans that meet institutional funder requirements.

Sign in	Create account							
* Email								
* Passw	ord							
Forgot pa	<u>issword?</u> nber email							
Sign in								
	- or -							
Sign in with your institutional credentials								

DMPonline helps you to create, review, and share data management plans that meet institutional and funder requirements. It is provided by the Digital Curation Centre (DCC).

DATA/CODE COLLECTION/GENERATION

For example:

Tabular data from fatigue experiments in .csv format X-ray computed tomography measurements in image .tif format Measurement data of aircraft emissions obtained on-site, in .nc4 format Library developed in Python for distributed real-time calculation processes Modules developed in C++ and MATLAB built upon open-source code Video recordings in .mp4 format of interactions between robots and human Simulation data of a jet flame in .cngs format using Ansys CFX solver Processed Particle Image Velocimetry measurements of a cavity model in .dat format Deep learning model for predictive maintenance developed in Python using tensorflow Analysis/visualization scripts developed in Python

DOCUMENTATION - README

Preview	V Code Blame 137 lines (78 loc) · 5.12 KB	
1	</td <td></td>	
2	This is a README.md template for releasing a code project in a GitHub/Gitlab repository.	
з	Under each section you can find commented text with explanation on what to add in each section.	
4	Please modify the sections depending on needs, and delete all commented text once the README is done.	
5	>	
6		
7	# Model name or Project Name	
8		
9	Add here a badge for the ArXiv identifier of the pre-print version of the paper/journal-article</td <td></td>	
10	related to this code project (arXiv:YYMM.NNNNN) (if applicable) e.g.:	
11		
12	[![Paper](http://img.shields.io/badge/Paper-arXiv.YYMM.NNNNN-B3181B?logo=arXiv)](https://arxiv.org/ab	/)
13	>	
14		
15	Add here the hyperlink to the finalized version of the paper/journal-article related to this project</td <td></td>	
16	(the DOI link provided by the journal publisher after peer-review acceptance) (if applicable) e.g.:	
17		
18	This repository is the official implementation of the following paper.	
19		
20	* Paper title: [Paper Title](https://doi.org/YYMM.NNNNN)	
21 22	>	
22		
23		
24	## Description	
26		
27	Provide description of the contents of the code repository</td <td></td>	
28	* Provide information about what the code does	
29		down
30	* Provide links for demos, blog posts, etc. (if applicable) * Mention any caveats and assumptions that were considered	JUWI
21		

README template for <u>code</u> README template for <u>data</u> README template for <u>machine learning</u>

DOCUMENTATION – EXPERIMENTAL DATA

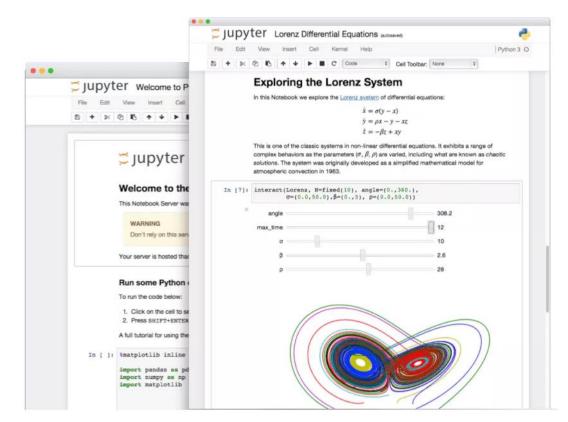
Original plan/protocol. A permanent fixed record of the design of the experiment (goal, team involved, procedure, instrumentation, testing, benchmarking). This file should also point out to the data dictionary and the file naming conventions used. See a template in Markdown (using the Code tab) <u>here</u>

Logbook and dictionary. Have two documentation files per experiment:

1) Logbook: record of *in-situ* settings and configuration of each individual experiment that together with the original plan/protocol- provides sufficient information to enable the reproduction of the experimental results (*what* was modified from the original plan?)

2) Dictionary: a spreadsheet with the definition of variables (for example: location, instruments, dimensions, resolution, aircraft type, studied pollutants, etc.); the units and precision for the numerical variables; the categories for categorical data; any encoding used (e.g., for qualitative variables); etc.

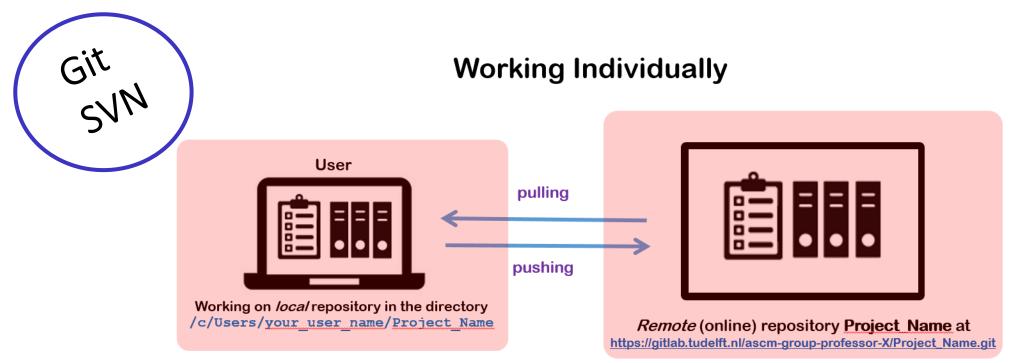
Data dictionary example


1	sample tin	nennint	cont po		MHC	Naph	Phen:		Fluor	Pyr	Bact	
-	and the local division of the local division	nepoint				napo	- THEFT	Antin		100		
	T1_0.1-A	-	0	0.1								
	T1_0.1-B	1	0	0.1	0				0			
4	T1_0.1-C	1	0	0.1						0		
2	T1_0.1+A	1	-	0.1		0.21	6.1	4.5	6.4	5.8		
0	T1_0.1+B	1	1	0.1		0.16	6.1	4.5	6.2	5.7		
1	T1_0.1+C	1	1	0.1		0.14	5.3	3.9	5.2	4.8		
8	T1_2-A	1	0	1	-0							
9	T1_2-8	1	0	14	43			0				
0	T1_2-C		0		4600			5.7	File Edit	Format	View H	Halo
1	T1_2+A	1	1			0.26	7.5					
4	T1_2+B	1	1	- 6	3900	0.7	6.5	4.9	Timepoi	nt: 1:	six we	eeks; 2: three months; 3: six month
3	T1_2+C	1	1		3200	0.12	6.1	4.8	cont: 0	: non-	contam	inated, 1:contaminated
4	T1_30-A	1	0		21							
2	T1_30-B	1	0		89							meters (filter)
0	T1_30-C	1	0		75		0	0	All che	mical	data an	re in mg/ Kg soil
1	T1_30+A	1	1		4000	0.21	7.1	5.6	MHC: Mi			
8	T1_30+B	1	1		4000	0.26		5.4				ar ports
9	T1_30+C	1	1	30	3500	0.18	5.9	4.5	Naph: N	aphtal	10	
0	T2_0.1-D	2	0	0.1				0	Phen: P	henant	hren	
11	T2_0.1-E	2	0	0.1								
12	T2_0.1-F	2	0	0.1					Anth: A			
	T2_0.1+D	2	1	0.1	1600	0.1	5.4	4.3	Fluor:	Fluora	inthen	
	T2_0.1+E	2	1	0,1	1600		4.1	3.5	Pyr: Py	ren		
25	T2_0.1+F	2	1	0.1	1400		5.2	4.3				1
440.7	T2_2-D	2	0	- 2					Bact: 1	65 CRA	IA COD14	es/ gr soil; primers: XXXX (Ref)

Zormpa, Eirini, & Martinez-Lavanchy, Paula. (2022, June 13). EMBL-EBI Bioinformatics for PIs 2022: Planning your data management session. Zenodo. https://doi.org/10.5281/zenodo.6637453 COMP-ECO 18

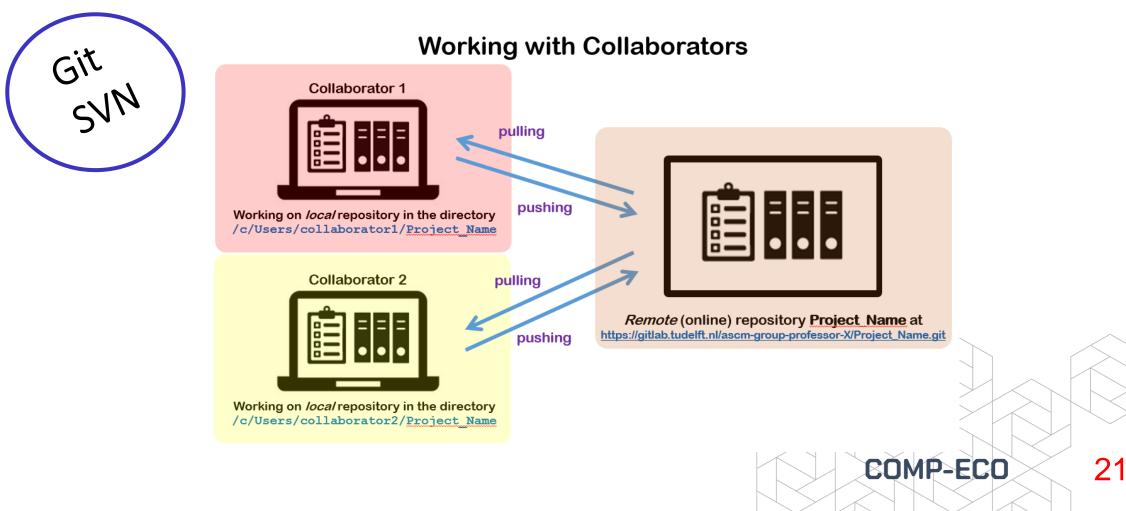
DOCUMENTATION - TOOLS

https://jupyter.org/

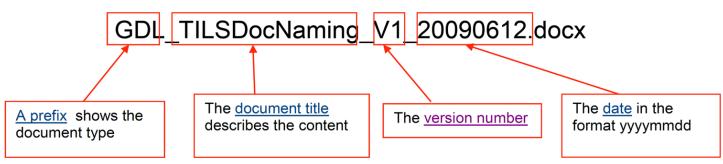

<u>Jupyter Notebooks</u> <u>Quarto</u> <u>Electronic Lab Notebooks</u>

COMP-ECO

DOCUMENTATION – VERSION CONTROL



DOCUMENTATION – VERSION CONTROL



INDIRECT DOCUMENTATION

TILS Document Naming Convention

Document naming for the TILS Division should follow this convention:

http://www.data.cam.ac.uk/files/gdl_tilsdocnaming_v1_20090612.pdf

https://github.com/HeatherAn/recommended-coding-practices/blob/main/13-Naming-Conventions.md

https://datamanagement.hms.harvard.edu/plan-design/file-naming-conventions

https://github.com/cookiecutter/cookiecutter

https://gitlab.tudelft.nl/handrewsmancil/improving-coding-practices-training

https://drivendata.github.io/cookiecutter-data-science/

\vdash	LICENSE	
\vdash	Makefile	<- Makefile with commands like `make data` or `make train`
i_	README.md	<- The top-level README for developers using this project.
Ĺ	data	
ł	└── external	<- Data from third party sources.
ł	└── interim	<- Intermediate data that has been transformed.
-		
1	processed	<- The final, canonical data sets for modeling.
-	∟ raw	<- The original, immutable data dump.
-	docs	<- A default Sphinx project; see sphinx-doc.org for details
-	models	<- Trained and serialized models, model predictions, or model summaries
	notebooks	<- Jupyter notebooks. Naming convention is a number (for ordering),
	IIO CEDOOKS	the creator's initials, and a short `-` delimited description, e.g.
-		
		`1.0-jqp-initial-data-exploration`.
1	references	<- Data dictionaries, manuals, and all other explanatory materials.
	rererences	<- bata dictionaries, manuals, and all other explanatory materials.
Ĺ	reports	<- Generated analysis as HTML, PDF, LaTeX, etc.
i	└── figures	<- Generated graphics and figures to be used in reporting
i i		gp
Ĺ	requirements.txt	<- The requirements file for reproducing the analysis environment, e.g.
i i		generated with `pip freeze > requirements.txt`
i i		generated with pip freeze - requirements fixe
È	setup.py	<- Make this project pip installable with `pip install -e`
i_	src	<- Source code for use in this project.
i	└── init .pv	<- Makes src a Python module
i		
İ	└── data	<- Scripts to download or generate data
i	└── make_datas	et.py
i		
i	— features	<- Scripts to turn raw data into features for modeling
i	│ └── build feat	ures.pv
i		
i	— models	<- Scripts to train models and then use trained models to make
Ì		predictions
i	predict_mo	del.py
i	└── train_mode	
i		
		<- Scripts to create exploratory and results oriented visualizations
1	└── visualize.	ру
	tox.ini	<- tox file with settings for running tox; see tox.testrun.org

24

For experimental data: **separate** raw, from processed data and go for a **hierarchical structure**

```
-- original plan/protocol
-- data/
      -- logbook
      -- dictionary
      -- raw/ (in raw/ subdivide the data corresponding to each experiment)
           -- location
                -- aircraft
                     -- engine
                          -- pollutant
      -- processed/
            -- location
                -- aircraft
                     -- engine
                          -- pollutant
      -- finalized/
-- docs/
                                                                   COMP-ECO
```


METADATA

Name Value Unit Type Threshold.setting 6839.0 eV ficadd Threshold.setting 6939.0 m ficadd Saper[0.1] since 0.11 since ficadd Saper[0.1] since 0.11 since ficadd Saper[0.1] since ficadd ficadd ficadd Saper[0.1] since ficadd ficadd ficadd ficadd Saper[0.1] ficadd ficadd ficadd ficadd ficadd Saper[0.1] ficadd ficadd ficadd ficadd ficadd ficadd Fired		h5pyViewe	٢		- 🗆 ×	I						5_1							- 0	×
■ unit view 200037/ligg Data setti D:3380082 Strosure_period 0.11 strosure_period 0.11 ■ mcs shape: (0.0) Strosure_period 0.0032 m Reat64 ■ mcs shape: (0.0) Detection 0.0032 m Reat64 ■ mcs shape: (0.0) Detection 0.0032 m Reat64 ■ mcs shape: (0.0) Detection 0.0032 m Reat64 ■ period Count_cutoff Bayespis counts inf64 ■ mcs shape: (0.0) Count_cutoff Bayespis str(23) ■ period Show Data Show Inage str(26) str(26) Bow Inage phint breach Indext-All Tm.flie pm.xl2a_L218762_T639.urf.mcg10.bin str(26) Print Properties phint breach Indext-All Indext-All Indext-All Indext-All Soo Print Properties phint breach Indext-All Indext-All Indext-All Indext-All Soo Indext-All Indext-All Indext-All Indext-All Indext-All Indext64 Inde	File Help					Name	Valu	le								Unit	Туре	2		
■ entry add:r401 (8:00:1 effort: 1 and (1:0) a. first64 ■ first64 Attributes: 12 (1:0) Store 0:10 (1:0) (1:0) ■ first64 Attributes: 12 (1:0) Store 0:10 (1:0) (1:0) ■ first64 Store 0:10 Store 0:10 (1:0) (1:0) (1:0) ■ first64 Store 0:10 Store 0:10 Store 0:10 Store 0:10 (1:0) (1:0) ■ first64 Store 0:11 Store 0:10 St	✓ a e14472_00033	3.hdf5		entry/data/spec		Threshold_setting	6839	9.0								eV	float	64		
abdr. 7440 (march 1 #FULL) abdr. 7440						Exposure_period	0.11									s	float	64		
Binnes mage: (10,1) (12,11) (12,11) Type: Compound filt time.2 alloc.tume.2 blow data Show Data Show Inage. Python Shell 0.1 s float64 Python Shell 0.1 s float64 Python Shell pinet.s.1 filt time.2 alloc.tume.2 blow time 0.1 s float64 Python Shell pinet.sc.1 filt time.2 alloc.tume.2 blow time 0.1 s float64 Python Shell pinet.sc.1 float64 st/(35) st/(36) Python Shell pinet.sc.1 pinet.sc.1 float64(2) st/(36) Print Properties float64(2) m float64(2) st/(36) Edt Help tem Two st/(36) st/(36) st/(36) st/(36) 1000 st/(36) st/(36) st/(36) st/(36) st/(36) 1000 st/(36) st/(36) st/(36) st/(36) st/(36) 1000 st/(36) st/(36) st/(36) st/(36) st/(36) st/(36) 1000 st/(36) st/(36) st/(36) st/(36) st/(36) st/(36) st/(36)					refCnt:1	Silicon	0.00	032								m	float	64		
mase phage: (LU, 0) filt ime2 alloc.tmm2 count.cutoff 399995 counts int64 Show Attributes alloc.tmm2 alloc.tmm2 by with ime2 alloc.tmm2 by with ime2 alloc	_					Detector	['PIL/	ATUS 2	M - SN0	1']							517	(1)		
 	_					Count_cutoff	-									counts	int64	Ļ		
alloc.time 2 layout1 Tu 125e-07 s float64 Tu 125e-07 s float64 Show Data Show Image Python Shell mitters:0 mitters:0 mitters:0 mitters:0 Python Shell pie.t.size [0.000172 0.000172] m float64 Pithon Shell pie.t.size [0.000172 0.000172] m float64(2) Feit Help item Two item Two s float64(2) Item Two item Two item Two s float64(2) Item Two item Two s float64(2) s float64(2) Item Two item Two s float64(2) s s float64(2) Item Two item Two s float64(2) s s float64(2) Item Two item Two s float64(2) s s s float64(2) Item Two item Two s float64(2) s s float64(2) Item Two item Two s float64(2) s s float64(2) Item Two s	· · ·	1		S		Gain_setting	low d	gain (vrf	= -0.30	0)							str(2	3)		
Show Data Show Mage Python Shell Python Shell Item Two Item Tree Tau Infiters:0 Tau Image_path (Als/X12X2a_E13676.14472p)tatus_1/50000-00999/50003/J str(55) str(56) Edt Help Pint Properties Item Tree PixeLsize [0.000172 0.000172] m m tost64(2) Optimize for a set of a se		v Attributos								- -						s	float	64		- 1
Show Image pifters:0 Image_path /sixX125A/Data10/e14472/pitatus_1/500000-00999/500033/ str(55) Python Sheil pim.tr.m.file pim.tr.2ss_E13678_T6839_urf.m0p30.bin str(36) Python Sheil pim.tr.2ss_E13678_T6839_urf.m0p30.bin str(36) Pitters:0 Image_path /sixX125A/Data10/e14472/pitatus_1/500000-00999/500033/ str(55) Edit Heip Pitters:0 Image_path /sixX125A/Data10/e14472/pitatus_1/50000-00999/500033/ str(50) 500 Image_path Image_path /sixX125A/Data10/e14472/pitatus_1/50000-00999/500033/ str(50) 1000 Image_path Image_path /sixX125A/Data10/e14472/pitatus_1/50000-00999/500033/ str(50) 1000 Image_path Image_path Image_path /sixX125A/Data16/e14475 fitters/molis 1000 Image_path				layout:1		1.1		e-07												
John Mindge Trim.Tile p2m.x12ss_E13678_T6839_vrf_m0p30.bin str(36) Python Shell Pint Properties Item Two Item Two Item Two Edit Help Item Two Item Two Item Two Item Two 5000 0				nfilters:0					Data10/	o14472	/nilatu	s 1/S00	000-00	999/50	0033/	5				
Print Properties Item Two Print Properties Item Two Image: Construction of the constr	Shov	w Image									•			555,50	,00000					
Print Properties Item Two Item Three HDFGridView: platue_1 Item Three 0	Pyth	ion Shell				1					2_11_1	10050.01								
Edit Help Hem Two Hem Three HDFGridView: pilatus_1 NUMPGridView: pilatus_1 0	Print	t Properties				-	0.0	00172	0.0001	/ 2]							noat	04(2)		
Carl Height Teem Three 0 <td>Item</td> <td>Two</td> <td>pilatus_1</td> <td></td> <td></td> <td>_ U X</td> <td>r</td> <td></td> <td></td> <td></td> <td>LUDI</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Item	Two	pilatus_1			_ U X	r				LUDI									
0 994 03 03 22 13 14 994 03 00 1000	Edit Help Item	Three									HDI	Gridvie	ew: pita	cus_1						~
500 993 61 71 66 72 71 75 74 75 74 75 <	0				_												894			ŧ Ĥ
500 997 99 <	- All All All All All All All All All Al						_					57	42	38	39		9			
500 998 59 59 59 56 69 1000 <td>1888 B</td> <td></td> <td>- 0</td> <td>×</td>	1888 B																		- 0	×
500 10000 1000												Shell	to the	HDF5	object	s				<u>^</u>
500 1001 49 56 51 hd: selected hdf5 object 1002 75 3a 4a 1000 75 3a 4a 1000 75 3a 4a 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000<					1000	D					46	fid h	df5 fi	le obi	ect					
1002 66 48 53 1001 1002 75 44 1001 1001 1001 1001 1001 1000 1001 1001 1001 1001 1001 1000 1001 1001 1001 1001 1001 1001 1000 1001 1001 1001 1001 1001 1001 1001 1000 1001	500											lbl: l	abel o	f sele d bdf5	cted h	df5 obj +	ect			
1000 -100	500													a naro	objec					=
1000 Image: constraint of the second se							1	003	75											
1000 1000					100			HDFGrid ds=h5py.Dataset(hid)												
1000 1000					100		samx	Epoch	curr	diode	temp	- i								_
10 1 -1.75 205.0 401.74 665.0 0.0 2 -1.25 205.0 401.63 6650 0.0 3 -0.75 206.0 401.63 6650 0.0 4 -0.25 2076.0 401.43 6661.0 0.0 4 -0.25 2076.0 401.34 6661.0 0.0 6 0.75 2082.0 401.324 6661.0 0.0 6 0.75 2082.0 401.324 6667.0 0.0 7 1.25 2095.0 401.115 6685.0 0.0 7 1.25 2095.0 401.115 6685.0 0.0 9 2.25 210.0 401.040 6687.0 0.0 0039811 1.0 598526(0.99920).98	1000					0	-2.25	2050.0	401.842	6625.0	0.0	#using	user (define amole	d modu as us:	les reload(us)•us	test1	(hid)	
1500 10 3 0.75 209.0 401.431 669.0 0.0 1500 4 0.25 207.6 401.431 6661.0 0.0 6 0.75 208.0 401.431 6661.0 0.0 7 1.25 209.5 401.115 66657.0 0.0 0.00 39920 39562(509920) 59662*+1 1.0 8 1.75 2101.0 401.016 6687.0 0.0 0039811 1.0 398562(0.99920) 398562(509920) 59662*+1 1.0 9 2.25 210.0 401.016 6687.0 0.0 0039811 1.0 598562(0.99920) 598562(50992) 59662*+1 1.0 10 2.25 210.0 401.016 6687.0 0.0 0039811 1.0 598562(0.99920) 598562(50992) 598562(50992) 598562(50992) 598562(50992) 598562(50992) 598562(50992) 598562(50992) 598562(5092) 598562(5092) 598562(5092) 598562(5092) 598562(5092) 598562(5092) 598562(5092) 598562(5092) 598562(5092) 598562(5092) 598562(5092) <t< td=""><td>1000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1000																			
1500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																an 22	013, 1	3:56:1	4)	
1500 3 0.75 2088.0 401.222 6679.0 0.00 205742 100 7 1.25 2095.0 401.115 6685.0 0.0 000000000000000000000000000000000000					- 10							Туре "	help",	"сору	right"	, "cred	its" 🛛	r "lic	ense"	
1500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											_		ore Init	ormatio	on.					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1500					7	1.25	2095.0	401.115	6685.0										- -
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1500																			
Image: Constraint of the second se	6 (1) (1)		ant ik		1	2	2.2.2	2100.0	.50.505	5715.0	0.0	2033310	1.0		0.55520		5021.0	5345264	1.0	1
1020 25 24 15 12 11 / 9 12 / 14 1021 20 20 9 10 8 9 6 13 10 7 16 1022 32 18 15 9 5 9 9 8 8 18 9 Axis:0 0 11 12 12 12 11 10 7 16 10 Axis:0 0 11 12 12 13 10 7 16 10	0 200	400 600	800	1000 1200 1400		3													1	
Image: Control of the second secon							-								1	-		/	14	
Axis:0 0 m		1 🔮 🗐											-	-	-					
	Axis:0						<						7		-	e	12	0		\rightarrow
							Axis	:0 0												
	x= 758 y=0 val=0							0												
								\leq	1			\mathbf{X}		<	/	\geq				
							\swarrow	>						>		\langle				

https://pypi.org/project/h5pyViewer/

DATA STORAGE

- 3-2-1 Rule
 - 3 copies
 - 2 storage media
 - 1 copy in a different (physical) location

DATA STORAGE

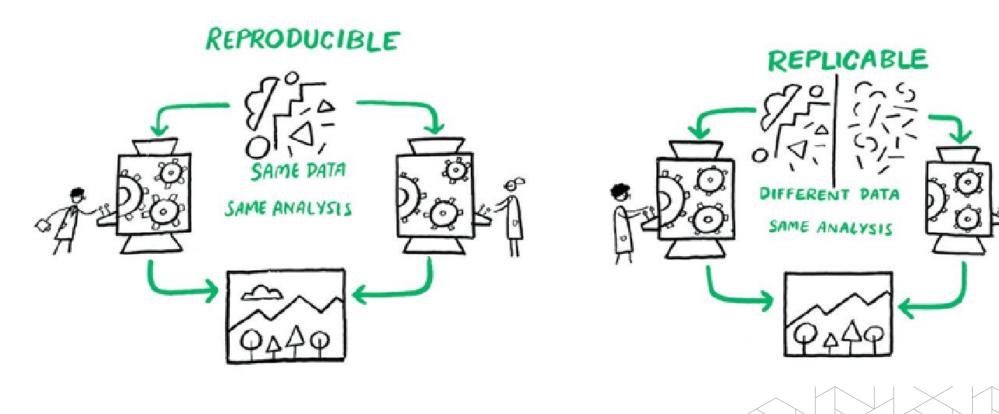
Institutional workstations & laptops

Optical Storage (e.g., CDs, DVDs)

External Drives & Thumbdrives (e.g., HDD, USB)

Institutional network drives

Cloud storage (e.g., Onedrive, AWS)


Other cloud services (e.g. MS Teams)

WHAT DATA/CODE SHOULD BE PRESERVED FOR THE LONG-TERM?

COMP-ECO

The Turing Way project illustration by Scriberia. Used under a CC-BY 4.0 licence. DOI: <u>10.5281/zenodo.3332807</u>.

Journal Article

Data/code that can be published

https://doi.org/10.4121/14827680.v1

Data underlying the publication: "A Computationally Efficient Moving Horizon Estimator for UWB Localization on Small Quadrotors""

quadrotor, quadrotor localization, State Estimation, Ultra

RefWorks, BibTeX, Reference Manager, Endnote, DataCite,

CATEGORIES

KEYWORDS

LICENCE

© 0

EXPORT AS...

NLM, DC, CFF

Aerospace Engineering

Wide Band, UWB Applications

doi: 10.4121/14827680.v1

Cite

DATASET

by Sven Pfeiffer ^(D), Christophe de Wagter ^(D), Guido de Croon

This Dataset contains the data files used for simulations in the publication "A Computationally Efficient Moving Horizon Estimator for Ultra-Wideband Localization on Small Quadrotors" (2021) by S. Pfeiffer, C. de Wagter and G.C.H.E de Croon.

The logs were collected in two different UWB modes (TWR and TdoA) and on 6 different trajectories (Square, Triangle, Octagon, Hourglass, Star, Random). UWB data was gathered with 8 anchors positioned roughly in the corners of a cube. Two of the files do not contain complete UWB data and are marked with the suffix "_BAD".

The data was recorded on a Crazyflie 2.1 in the TU Delft "Cyberzoo" indoor flight arena using the scripts found at https://github.com/Huizerd/crazyflie-suite. The code used for the simulations in the paper can be found at https://github.com/SUPfeiffer/uwb-simulator

This dataset contains the following files: anchor_positions.yaml : This file contains the location of the UWB anchors in Cyberzoo coordinates date_time_mode_trajectory.csv : The log files

Data/code that CANNOT be published

Network locations (4)

Staff Group Data (M:)

Staff Bulk Data (N:)

Project Data (U:)

Network Drive Network Drive

Network Drive

Supporting data for ultrasonic guided wave and electro-mechanical reactance tests on a full scale composite torsion box panel

doi: 10.4121/uuid:8c743b60-69f3-4f59-b738-8f58b784bb9f

DOI (persistent identifier) of the dataset

DATASET

by Pedro Carvalho

The data refers to ultrasonic guided wave (GW) measurements on a full-scale composite torsion box stiffened panel. The panel was subjected to realistic low-energy impacts in different critical locations in order to obtain barely-visible impact damage (BVID) of different severities. The purpose of the study was to assess the diagnostic capabilities of the GW based structural health monitoring (SHM) system, which was designed according to a newly developed systematic multi-parameter methodology. Hence, the diagnostic capability assessment served also the purpose of validating the SHM system design methodology. The data in this dataset was collected in the Netherlands Aerospace Centre – NLR, located in Marknesse, the Netherlands, and was integrated in the Thermoplastic Affordable Primary Aircraft Structure 2 (TAPAS 2) project, financed by the Netherlands Enterprise Agency of the Ministry of Economic Affairs

HISTORY

2019-01-28 first online, published, posted

PUBLISHER 4TU.Centre for Research Data Metadata items compatible with that of web search engines

FORMAT

media types: application/pdf, application/x-matlab-data, application/zip, text/csv

REFERENCES

https://doi.org/10.1002/stc.2340

FUNDING

The Netherlands Enterprise Agency of the Ministry of Economic Affairs

ORGANIZATIONS

TU Delft, Faculty of Aerospace Engineering, Department of Aerospace Structures and Materials

CONTRIBUTORS Benedictus, R. (Rinze) Groves, R.M. (Roger)

vas CATEGORIES Pe Aerospace Engineering

Construction Materials Performance and Processes

KEYWORDS

Barely-visible impact damage (BVID), Composite primary structure, Structural health monitoring (SHM), System

design, Ultrasonic guided wave (GW)

Open content license (CC-BY-NC)

EXPORT AS... RefWorks, BibTeX, Reference Manager, Endnote, DataCite,

NLM, DC, CFF

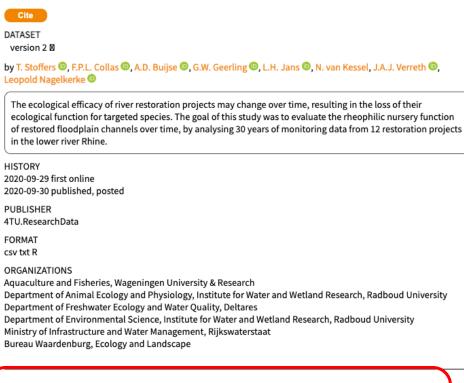
Example of published data via the <u>4TU.ResearchData</u>

https://doi.org/10.4121/uuid:8c743b60-69f3-4f59-b738-8f58b784bb9f

USAGE STATS

99 601

Performance and



Data from: 30 years of large river restoration: how long do restored floodplain channels remain suitable for targeted rheophilic fishes in the lower river Rhine?

doi: 10.4121/12999575.v2

DATA - restricted access

Reason Request from the researcher. In order to obtain the data, please contact WUR-Library (data.library@wur.nl)

Request access to data.

USAGE STATS

1349 1 views citations

CATEGORIES

Fisheries Sciences

KEYWORDS

cyclic rejuvenation, habitat succession, nursery area, river management, river rehabilitation, riverine fishes

GEOLOCATION The lower river Rhine

TIME COVERAGE 1989-2019

EXPORT AS... RefWorks, BibTeX, Reference Manager, Endnote, DataCite, NLM, DC, CFF

Example of published metadata with the data available upon request

https://doi.org/10.4121/12999575.v2

31

COMP-ECO

LBoW - Linear Buoyancy Wave Package

doi: 10.4121/21711227.v1

SOFTWARE

by Dries Allaerts 💿

LBoW is a python package for solving linear buoyancy wave problems, like for example uniform stratified flow over a bell-shaped hill. The software presents a semi-analytical implementation of linear theory for stratified flow (i.e., the Taylor-Goldstein equation).

Checkout the README.md file for installation instructions, software requirements, etc. More information as well as the latest version of the software can be found in the GitHub repository

HISTORY 2022-12-13 first online, published, posted

PUBLISHER 4TU.ResearchData

FORMAT Python package (compressed into one zip file)

REFERENCES https://github.com/DriesAllaerts/lbow

ORGANIZATIONS TU Delft | Faculty of Aerospace Engineering | Department of Flow Physics and Technology

DATA

FILES

1,213,759 bytes md5 lbow-0.1.0.zip

USAGE STATS

13 155 downloads views

CATEGORIES Mechanical Engineering Aerospace Engineering Environmental Engineering Atmospheric Sciences

KEYWORDS Atmospheric gravity waves, Linear theory, Wind energy

LICENCE

Apache-2.0

EXPORT AS... RefWorks, BibTeX, Reference Manager, Endnote, DataCite, NLM, DC, CFF

Example of published code via the 4TU.ResearchData-Github integration

https://doi.org/10.4121/21711227.v1

COMP-ECO

EXAMPLES OF PUBLISHED DATA AND CODE

Code:

4TU.ResearchData repo: <u>https://doi.org/10.4121/21711227.v1</u> Github repo: <u>https://github.com/DriesAllaerts/lbow</u> 4TU.ResearchData repo: <u>https://doi.org/10.4121/16764238.v1</u> Github repo: <u>https://github.com/bartroot/GSH</u> 4TU.ResearchData repo: <u>https://doi.org/10.4121/13387985.v1</u> Github repo: <u>https://github.com/ROOSTER-fleetmanagement/rooster_fleet_manager</u> (in this case more detailed documentation is shared via Github pages: <u>https://rooster-fleet-management.github.io/rooster_fleet_manager/</u>)

Data:

https://doi.org/10.4121/21667796.v1 https://doi.org/10.4121/uuid:5deaf8cf-ec57-4e33-86c4-8253a00df1d4 https://doi.org/10.4121/16437297.v1 https://doi.org/10.4121/uuid:edfc5304-39ed-4556-a95a-f8b3313f7cfc

Back end

CITATION METADATA

<metadata xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns="http://dublincore.org/documents/dcmi-terms/">

<dcterms:title> Investigation of fatigue crack growth in a single cycle by means of acoustic emission
</dcterms:title>

<dcterms:identifier>https://hdl.handle.net/10411/20730</dcterms:identifier> <dcterms:creator>Pascoe, John-Alan</dcterms:creator> <dcterms:creator>Zarouchas, Dimitrios</dcterms:creator> <dcterms:creator>Alderliesten, René</dcterms:creator> <dcterms:publisher>DataverseNL</dcterms:publisher> <dcterms:issued>2016-04-13</dcterms:issued> <dcterms:modified>2016-04-18T15:21:40Z</dcterms:modified>

</metadata>

. . .

Front end (repository website)

Citation Metadata 🔺	
Dataset Persistent ID	hdl:10411/20730
Publication Date	2016-04-13 Values
Title	Investigation of fatigue crack growth in a single cycle by means of acoustic emission
Author Elements	Pascoe, John-Alan (Delft University of Technology) Zarouchas, Dimitrios (Delft University of Technology) Alderliesten, René (Delft University of Technology)
Contact	Use email button above to contact. John-Alan Pascoe (Delft University of Technology)

Platform	Storage space	Max file size	Metadata Quality	ID	Location Storage
4TU.ResearchData <u>http://data.4tu.nl</u>	- 1 TB per TU Delft user per year - Public	10 GB	High	DOI	Netherlands
Zenodo https://about.zenodo.org/	 - 50 GB per upload - "No" limit on # of datasets (donate) - Public and Private 	None	High	DOI	CERN Data Center
Figshare <u>https://figshare.com/features</u>	- Private: 20 GB per user - Public: Unlimited - Public and Private	5 GB	Low	DOI	Amazon Web Services
DataverseNL https://dataverse.nl/	- "No" limit (fair use) - Public and Private	2 GB	High	Handle	Netherlands (DANS)
Open Science Framework https://osf.io/	- Adds-on limits - Public and Private	5 GB (add- on for larger files)	Medium	DOI	Google Cloud Amazon Glacier

	Platform	Features	Max project size	Max file size	Supports
Repositories	Github <u>https://github.com/</u>	 Unlimited number of collaborators (free and paid plans) Public: unlimited number of projects (free) Private: unlimited number of project (paid) 	1 GB	100 MB	Git SVN
	Bitbucket <u>https://bitbucket.org</u>	 - 5 collaborators in public and private projects (free and paid plans). More must be paid. - Public: unlimited number of projects (free and paid) - Private: unlimited number of projects (free and paid) 	1(2) GB	None	Git Mercurial SVN SourceForge
Code	GitLab <u>https://gitlab.com/</u>	 Unlimited number of collaborators (free and paid plans) Public: unlimited number of projects (free and paid) Private: unlimited number of projects (free and paid) 	10 GB	None	Git

h.e.andrewsmancilla@tudelft.nl

