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What are we going to discuss?

• Introduction to aeroelasticity and aeroelastic tailoring

• Modelling aspects

• Optimisation formulation

• Aeroelastically tailored results

• Experiments
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What is aeroelasticity?

Aeroelasticity deals with the behaviour 
of an elastic structure in an airflow 

where there is signification interaction 
between the two
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What is aeroelasticity?
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Aeroelastic interaction
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Static aeroelasticity

• Divergence

• Control reversal/effectiveness

• Trim

• Manoeuvre loads

Collar’s triangle

E I
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Mechanical vibrations

Flight dynamicsStatic aeroelasticity

Dynamic
aeroelasticity
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Dynamic aeroelasticity

• Flutter

• Dynamic loads
• Gust loads
• Control loads

Collar’s triangle

E I

A

Mechanical vibrations

Flight dynamicsStatic aeroelasticity

Dynamic
aeroelasticity
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The importance of aeroelasticity

• Calculation of jig shape of the aircraft wing

• Aircraft performance optimisation

• Aircraft weight minimisation

• Flight envelope constraining

• Ride comfort
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Aeroelastic tailoring? What is it?

The embodiment of directional stiffness into an 
aircraft structural design to control aeroelastic 
deformation, static or dynamic, in such a fashion as to 
affect the aerodynamic and structural performance of 
that aircraft in a beneficial way.

Weisshaar, 1986
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Aeroelastic tailoring: the challenges
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Flight conditions
Manoeuvre/gust

Fuel and mass 
cases

Static/dynamic 
aeroelastic stability 

and response

Aeroelastic analysis
- NL Timoshenko beam
- High-subsonic aero (continuous time)

PROTEUS
Skin and spar 

strains

Cross-sectional modeller
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HiFi NASTRAN model

• NASTRAN has limitations:
1. High subsonic aerodynamics only (DLM)
2. Limited capability to model airfoil curvature
3. No sensitivity analysis of dynamic loads for optimization

• 2 proposed methods to solve issues with limitations 1/2 and 3
1. Hybrid static approach (HSA)
2. Equivalent static loads (ESL)
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NASTRAN design loop
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Lift Root bending Root torsion
Coupled CFD/CSM 1. 1. 1.

Trimmed HSA 1. 1.0196 1.0093
Trimmed DLM 1. 1.1568 1.0018

Aircraft flying at Mach 0.85, wing tip deflection approx. 5%

Correction for manoeuvres using the HSA
Developed by MSC Software, implemented in MSC NASTRAN:

𝑄 = 	𝑄!"#"$%&' 𝛼 +	∆𝑄()*+,"-'./ (𝑢)
Elastic increment (DLM)From rigid CFD database

+
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Equivalent static load

6 
 American Institute of Aeronautics and Astronautics 

 
Figure 7. Monitoring points on the wing 

 

 
Figure 8. Extracted snapshots of a gust simulation 

 

 
Figure 9. Envelope surrounding gust and maneuver loads 

 

C. Structure optimization 
For the structure optimization, 66 design fields are defined for the wing box. These consist of 22 fields for 

each the upper and lower skin, and 11 fields each for the front and rear spar. The number of the design fields 
results from a compromise between the detail level of the material thickness distribution and computation time 
saving in the structure optimization. The 22 design fields on the upper skin of the wing are shown in Figure 10. 
The filtered nodal loads from the loads analysis are then inputted into SOL200, the structure optimization 
module of MSC.Nastran. The objective is to minimize the wing box mass. The constraints considered in the 
structure optimization process are buckling and von-Mises stress for the aluminum aircraft, respectively the first 
layer failure criterion for the composite aircraft. The buckling constraint is based on the approach used by 
Klimmek5 with a uniaxial loaded plate strip, where the stringer pitch is assumed as the buckling field width. 
However, in the GMR FE-model the stringer pitch varies along the half span due to the taper ratio and because 
the number of stringers is constant. To avoid having very large buckling field widths in the wing root area, a 
constant stringer pitch of 250 mm is assumed in the buckling stress calculation for the whole wing box. 
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What will we discuss for the optimisation?

1. Design variables

2. Aeroelastic constraints

3. Structural constraints

4. Manufacturing constraints

5. Flight shape constraint

6. Objectives
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Design variables
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Homogenisation

6 INTRODUCTION 1.1

important research topic for decades. A standard work that covers many composite
related topics is provided for example by Schürmann [Sch07], while the work by Gürdal
et al. [Gur99] focuses on the optimization related topics in composites.

The following sections exemplify two possibilities in parameterizing the sti↵ness
properties of a laminate, which will later on serve as design variables in the optimiza-
tion process. While both methods are based on the classical lamination theory, the
first one derives laminate sti↵nesses on the basis of single layers comprising thickness
and fiber angles, section 1.1.1. The specification of sti↵nesses by means of lamina-
tion parameter as described in section 1.1.2 makes use of so-called material invariants
and allows for a continuous sti↵ness matrix parametrization. Section 1.1.3 eventually
introduces a sti↵ness visualization methodology.

1.1.1 Classical Lamination Theory

The stress-strain relation in the principal direction of a single composite layer as
depicted in Figure 1.3 can be written as:
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where “1” denotes the fiber direction and “2” the direction orthogonal to the fiber
direction. The relation results from the general 3D stress-strain relation with the
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Figure 1.3: Coordinate systems and fiber angle in a single layer

plain stress assumption �3 = ⌧31 = ⌧23 = 0. The matrix elements in Q, denoted as
reduced sti↵nesses, can be written as:

Q11 =
E1

1� ⌫12⌫21
, (1.3)

Q22 =
E2

1� ⌫12⌫21
, (1.4)

Q12 =
⌫12E2
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, (1.5)

Q66 = G12 . (1.6)
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denote the laminate membrane, coupling, and bending sti↵ness matrices, respectively.
The coupling matrix B establishes a connection between in-plane and out-of-plane
deformations and loadings; it vanishes for symmetric laminates. Rewriting equation
(1.19) and (1.20) in matrix notation results in:
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Equation (1.24) best explains the possible coupling mechanisms that can arise
as a consequence of non-zero elements in the membrane sti↵ness matrix A and the
bending sti↵ness matrix D. Postulating symmetrical stacking sequences only, the
coupling matrix B vanishes and will not be considered. The in-plane coupling of
deformations "0x and "0y via matrix element A12 reflects the elongation-contraction
e↵ect described by the Poisson’s ratio. Since A12 will never be zero, the coupling
will always exist. More interesting however are sti↵ness elements A13 and A23, which
couple the in-plane extension and shear deformations. When non-zero, a laminate
loaded in tension will simultaneously experience a shear deformation. Later on it will
be demonstrated that extension-shear coupling constitutes one of the fundamental
instruments in aeroelastic tailoring. The magnitudes of A13 and A23 are directly
related to the laminate stacking sequence. A designated rank is devoted to balanced
laminates, which feature a ply with negative angle �✓ for each ply with positive ✓.
Along with the restriction to symmetric laminates, extension-shear coupling terms
in the A matrix will be zero. Unbalanced laminates however do feature non-zero
coupling elements, indicating their superior suitability for aeroelastic tailoring.
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where “1” denotes the fiber direction and “2” the direction orthogonal to the fiber
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Figure 1.3: Coordinate systems and fiber angle in a single layer

plain stress assumption �3 = ⌧31 = ⌧23 = 0. The matrix elements in Q, denoted as
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Lamination parameters

10 INTRODUCTION 1.1

Similar considerations can be employed for the bending sti↵ness coupling terms
D13 and D23. These terms cause twisting of a laminate that is purely loaded in
bending, and are therefore denoted as bending-twist coupling terms. The latter should
not be confused with what is commonly denoted as bending-twist coupling of a wing.
This e↵ect in turn is caused to a large extent by the previously described extension-
shear coupling of the mostly membrane-loaded wing skins.

More details on coupling e↵ects in combination with aeroelastic tailoring will be
provided in the chapters dedicated to the application of the developed sti↵ness opti-
mization process.

1.1.2 Lamination Parameters

The derivation of sti↵ness matrices with classical lamination theory demonstrated
the direct link of sti↵ness properties with the stacking sequence in terms of layer
thicknesses and fiber angles. Another possibility is to express the laminate sti↵ness
matrices not as function of the stacking, but as function of lamination parameters
exists and will be discussed below.

Lamination parameter were first introduced by Tsai et al. [Tsa68], [Tsa80], and
represent an integrated form of the layer angles over the laminate thickness as shown
in equation (1.25):
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In combination with the material invariant matrices �i, lamination parameters con-
stitute a set of twelve continuous variables that along with a laminate thickness h
su�ce to compute the material sti↵ness matrices according to equation (1.26):

A = h(�0 + �1V1A + �2V2A + �3V3A + �4V4A) ,

B =
h2

4
(�1V1B + �2V2B + �3V3B + �4V4B) , (1.26)

D =
h3

12
(�0 + �1V1D + �2V2D + �3V3D + �4V4D) .

Equation (1.26) also suggests a thickness normalized version of the sti↵ness matrices,
denoted with a hat symbol:

Â = A
1

h
, B̂ = B

4

h2
, D̂ = D

12

h3
. (1.27)

Lamination parameters in principle are allowed to vary independently, however,
only within feasible regions that in turn will result in feasible stacking sequences.
This implies that the boundaries within which a parameter can be varied depend on
the magnitude of all other parameters. The application of lamination parameters has
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been hampered by the lack of definition of the the feasible region for simultaneously
optimizing in-plane and bending behavior. Recently, many attempts have been made
to remedy this, such as Setoodeh et al. [Set06a] who give approximate feasible regions
for any combination of lamination parameters.

The material invariant matrices �i result from the material invariants Ui. As their
name implies, they only depend on material properties and not on the fiber angle.
They can be derived from elements of the reduced sti↵ness matrix, equation (1.1):

U1 = (3Q11 + 3Q22 + 2Q12 + 4Q66)/8 ,

U2 = (Q11 �Q22)/2 ,

U3 = (Q11 +Q22 � 2Q12 � 4Q66)/8 , (1.28)

U4 = (Q11 +Q22 + 6Q12 � 4Q66)/8 ,

U5 = (Q11 +Q22 � 2Q12 + 4Q66)/8 .

The material invariants Ui can also be applied in derivation of the directional sti↵-
ness matrix of a single layer. The generation of a transformation matrix T and the
according matrix multiplications shown in equation (1.12) are not required:

Q̄11 = U1 + U2cos2✓(k) + U3cos4✓(k) ,

Q̄22 = U1 � U2cos2✓(k) + U3cos4✓(k) ,

Q̄12 = U4 � U3cos4✓(k) , (1.29)

Q̄66 = U5 � U3cos4✓(k) ,

Q̄16 = (U2sin2✓(k) + 2U3sin4✓(k))/2 ,

Q̄26 = (U2sin2✓(k) � 2U3sin4✓(k))/2 .

From the invariants, equation (1.28), follow the material invariant matrices �i, equa-
tion (1.30), that are applied in the derivation of the laminate sti↵ness matrices ac-
cording to equation (1.26). Again, it should be stressed that �i do only depend on
material properties.
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U3 �U3 0

3

5 . (1.30)

While a physical interpretation of the influence of each lamination parameters on
the membrane sti↵ness matrix is provided by IJsselmuiden [IJs11], an examination
of equations (1.26) and (1.30) already provides some hints. With a full set of twelve
lamination parameters, the description of an arbitrary stacking sequence is possible.
Imposing a restriction to symmetric laminates, the coupling matrix B vanishes along
with ViB = 0. The eight remaining lamination parameters for A and D in general
specify a symmetric and unbalanced laminate, with fully populated sti↵ness matrices.
Noting that only invariants �2 and �4 exhibit non-zero elements in the coupling
terms (1, 3) and (2, 3), the description of a balanced laminate is to hand when setting
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Jig shape parameters

• 1g flight shape is usually determined by aerodynamics.

• Most common procedure is to reverse that 1g loads and apply them to the 
1g shape to retrieve the jig shape.

• This approach does not work in case of large deflections.

• 1g shape twist is driving the aerodynamic performance, to a lesser extent 
also 1g shape deflection.

• Jig shape twist distribution part of the optimization, constraint on 1g twist 
distribution.
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Aeroelastic constraints
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Aeroelastic stability

• There are two types of aeroelastic stability:
• Divergence
• Flutter

• Both can be approached as an eigenvalue equation.

• Divergence is calculated automatically when carrying out a flutter analysis.
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Aileron effectiveness

• Deflecting control surfaces and cause a nose down twist of the wing 
counteracting the intended roll moment.

• A minimum control effectiveness is required to keep the aircraft 
controllable.

• Control surface use can differ for high speed and low speed flight.

2.2 STATIC AEROELASTIC RESPONSES 29

Overall, the increase in lift for a downward deflected aileron is crucially a↵ected
by the elastic properties of the wing structure. For a sweptback, torsionally weak
wing the lift decrease due to angle of attack reduction can surpass the additional
component of the camber increase and hence result in an opposite directed lift force.
This state is called aileron reversal, since the aircraft will roll in the direction opposite
to that intended. Depending on the type of aircraft, certification regulations require
an aircraft will not su↵er from aileron reversal within a specified velocity and altitude
range. For passenger type aircraft, the CS-25 regulation [EAS12] asks for reversal
free aileron action within an aeroelastic stability envelope boundary that results from
the regular flight envelope boundary velocity VD/MD multiplied by 1.15. In the
high speed regime, aileron e↵ectiveness degradation tends to be an active constraint,
yielding a lower bound on the torsional flexibility of a swept back wing.

Multiple ways of assessing the aircraft reaction on an aileron deflection exist,
among which are aileron e�ciency and aileron e↵ectiveness. Aileron e�ciency ex-
presses the ratio of roll rate for the elastic and the, virtually, rigid wing, see Wright et
al. [Wri08]. With increasing bending and torsional sti↵ness the aileron e�ciency ap-
proaches a value of one, while an ine↵ective aileron has zero e�ciency, and a negative
e�ciency when aileron reversal occurs.

Aileron e↵ectiveness is computed as the negative ratio of roll coe�cient due to
aileron deflection and the roll coe�cient due to rolling (roll damping), both for the
elastic wing:

⌘ail = �Cl�

Clp

. (2.2)

Equation (2.2) can be derived from a consideration of the moment equilibrium for a
steady roll maneuver. The sum of rolling moment due to aileron deflection, M�, and
the rolling moment due to rolling, known as roll damping, Mp, has to vanish in a
steady roll motion:

M� +Mp = 0 ,

Cl��(qSrefs) + Clpp
s

V1
(qSrefs) = 0 ,

�Cl�

Clp

� =
ps

V1
, (2.3)

where p is the roll rate, � the aileron deflection, and s = b/2 the wing semispan.
The expression on the right side of equation (2.3) corresponds to the arc tangent

of the helix angle, outlined in Figure 2.4, being the angle between flight path velocity
V1 and the wing tip velocity, rotating with a circumferential velocity ps. The aileron
e↵ectiveness is equal to the arc tangent of the helix angle for unit aileron deflection
� = 1.0.

Due to the vividness of the helix angle and the ability to derive a roll rate p simply
by multiplying ⌘ail with � V1

s , aileron e↵ectiveness will be the response considered as
the objective or constraint in this work.

2.2.2 Divergence

Divergence is a static aeroelastic instability phenomenon that can have a large influ-
ence on wing design. The aeroelastic flight envelope mentioned in the previous section
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helix angle

Figure 2.4: Helix angle definition

2.2.1 for aileron reversal also applies to divergence, demanding a divergence free air-
craft within the aeroelastic stability envelope. As is the case for aileron e↵ectiveness,
divergence is a result of the finite wing sti↵ness and can be illustrated using a 2D
section, Figure 2.5.

With the aerodynamic center lying typically in the quarter chord, an increase in
lift force results in an additional, elastic angle of attack ✓, which in turn leads to a
further increase in lift force and therefore to an increase in elastic angle of attack.
Depending on the distances of the aerodynamic center to the elastic axis, xac, and
on the torsional sti↵ness K✓ of the section, either a static equilibrium is obtained, or
the elastic angle of attack ✓ increases further and further until the structural limit is
reached and the section fails. This is referred to as divergence. The overall lift force

θ

α

K
θ

V
∞

L

M0

Ladd

xac

 

 
elastic axis
aerodynamic center

Figure 2.5: Static rotation of a 2D section

can be expressed in terms of the lift curve slope Cl↵ , dynamic pressure q = ⇢
2
V 2
1,

reference chord cref and the overall angle of attack ↵+ ✓ as:

L+ Ladd = qcrefCl↵(↵+ ✓) . (2.4)

Summing up the moments about the elastic axis yields:

qcrefCl↵(↵+ ✓)xac +M0 �K✓✓ = 0 , (2.5)
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Handling Qualities
MIL-HDBK-1797

Class of 
Aircraft

Level of
Maneuvera

bility

Category 
of

Maneuver
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Handling Qualities
MIL-HDBK-1797

Class of 
Aircraft

• Class I
Ultralight aircraft.

• Class II
Assault, bomber etc.

• Class III
Commercial etc.

Level of
Maneuvera

bility

Category 
of

Maneuver
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Handling Qualities
MIL-HDBK-1797

Class of
Aircraft

Level of
Maneuvera

bility
• L1

Adequate.

• L2
Acceptable.

• L3
Controllable.

Category 
of

Maneuver
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Handling Qualities
MIL-HDBK-1797

Class of 
Aircraft

Level of
Maneuvera

bility

Category 
of

Maneuver

• A
Combat.

• B
Gradual maneuvers.

• C
Take-off, landing.
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Handling Qualities
MIL-HDBK-1797

Category 
of

Maneuver

• A
Combat.

• B
Gradual maneuvers.

Level of
Maneuvera

bility
• L1

Adequate.

• L2
Acceptable.

• L3
Controllable.

Class of 
Aircraft

• Class I
Ultralight aircraft.

• Class II
Assault, bomber etc.

• Class III
Commercial etc.
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• Short-Period Frequency and Damping

• Phugoid Damping

• Flight Path Angle

Handling Qualities
MIL-HDBK-1797
3.2 Longitudinal Flight Qualities
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100 101 102

nα -1

10-1

100

101

102

ωn

LEVEL 1
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Short-Period Frequency
Class III
Category B
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Short-Period Frequency
Class III
Category B

Load Factor
Trim Angle
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ωn
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LEVEL 1

LEVEL 2 & 3

LEVEL 2

Example
Short-Period Frequency
Class III
Category B

Modal Frequency
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100 101 102

nα -1

10-1
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101
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ωn
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LEVEL 1

LEVEL 2 & 3

LEVEL 2

Example
Short-Period Frequency
Class III
Category B

Adequate
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100 101 102

nα -1

10-1

100
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ωn

LEVEL 1

LEVEL 1

LEVEL 2 & 3

LEVEL 2

Example
Short-Period Frequency
Class III
Category B

Acceptable
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10-1
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101
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ωn

LEVEL 1

LEVEL 1

LEVEL 2 & 3

LEVEL 2

Example
Short-Period Frequency
Class III
Category B

Controllable
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Structural constraints
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Laminate feasibility

• There must be a feasible combination between lamination parameters to 
retrieve feasible stacking sequence.

• In-plane and out-of-plane lamination parameters can not be chosen 
independently.

3

3.2. COMPOSITES

performance predicted by lamination parameters results in a theoretical optimum
and a drop in performance can be expected when converting back to ply angle
space depending on the application and the number of plies in the laminate. The
focus of this dissertation, however, is on the potential increase in performance
by using composites for aeroelastic tailoring and will only address the continuous
stiffness optimisation using lamination parameters.

The second drawback of lamination parameters is that no set of closed-form ex-
pression is known that fully defines the feasible region of lamination parameters.
Hammer et al. (1997) derived a set of closed form expressions that define the
feasible region of the in-plane, coupling, and bending lamination parameters sep-
arately, given by:

2V 2
1 (1− V3) + 2V 2

2 (1 + V3) + V 2
3 + V 2

4 − 4V1V2V4 ≤ 1 (3.28)

V 2
1 + V 2

2 ≤ 1 (3.29)

−1 ≤ Vi ≤ 1 (3.30)

However, the in-plane, coupling, and bending lamination parameters cannot vary
independently, as they are all defined by the same ply angles and stacking sequence
for a given laminate. Recently, Raju et al. (2014) and Wu et al. (2015) used
the Cauchy-Schwarz inequality to derive two closed-form expressions constraining
a combination of in-plane and out-of-plane lamination parameters, as given in
Appendix A. These equations, however, only provide a necessary condition and
are not sufficient to fully contrain the lamination parameter feasibility region.

In order to approximate the full feasibility region of lamination parameters, two
approaches exist in the literature. Bloomfield et al. (2009) obtained a set of
constraints describing the convex hull of the lamination parameter design space
by considering a set of predefined ply angles and Setoodeh et al. (2006) obtained
a set of linear constraints by approximating the convex hull of the lamination
parameter design space by generating feasible design points until the total volume
of the convex hull has converged. Both approaches have not been considered in
the present dissertation, since the approach by Bloomfield et al. (2009) constrains
the design space a priori to a set of fixed ply angles, negating one of the benefits
of the use of lamination parameters and the approach by Setoodeh et al. (2006)
results in a large amount of constraints (i.e. 37126 for V1A, V3A, V1D, V3D) slowing
down the optimisation process. A slightly reduced performance is expected when
converting the lamination parameters to an actual stacking sequence. Most panels
will, however, only be critical in either strength, which is driven by the in-plane
properties of the laminate (i.e. the A-matrix), or buckling, which is driven by
the out-of-plane properties of the laminate (i.e. the D-matrix). Therefore, when,
for example, a laminate is critical in strength, the stacking sequence retrieval
procedure can be used to find a best match between the in-plane lamination

35
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Laminate feasibility

Composite Parametrization Aeroelastic Tailoring Composite Constraints Aero Performance Constraint

Stiffness matrix parametrization with LP

First European MDO Workshop - 4/17 Do not reproduce/use without permission

Lamination Parameters (LP)

A = h(�0 + �1vA
1 + �2vA

2 + �3vA
3 + �4vA

4 )

B =
h2

4
(�0 + �1vB

1 + �2vB
2 + �3vB

3 + �4vB
4 )

D =
h3

12
(�0 + �1vD

1 + �2vD
2 + �3vD

3 + �4vD
4 )

with:

(vA,B,D
1 , vA,B,D

2 , vA,B,D
3 , vA,B,D

4 ) = f
⇣X

(cos(2✓), sin(2✓), cos(4✓), sin(4✓))
⌘

Known drawbacks

• The stacking sequence need to be retrieved
• Need for feasibility constraints for the variables v1,3 v1

v1v3

v4v2

v3v2,4

Isotropic part Anisotropic part
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Buckling

• Only inter-rib and inter-stiffener buckling is 
considered.

• The buckling panels are assumed to be simply 
supported.

• Panels transformed to a domain ranging from 
-1 to 1 using a bilinear transformation.

• The load is assumed to be constant over a 
panel in a certain direction.
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Failure
• Tsai-Wu first ply failure criterion.

• Related to strain measures through the Q matrix:

• Transformation from material strains to laminate strains
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the strain space that is safe regardless of the ply angle. An analytic
solution is obtained for this conservative failure envelope. It is shown
that two different envelope equations may apply depending on
material stiffness properties and failure stresses. It is also shown that
the envelope equation is a function of only two strain invariants.
However, the proposed failure envelope should not be considered as
a strain invariant failure criterion such as the one proposed by Gosse
and Christensen [21].

Stiffness-based optimization is relatively straightforward to
implement and, hence, is often used as a substitute for strength-based
design. Therefore, it is interesting to compare the strength- and
stiffness-based optimal designs. The objective of the strength-based
optimization is to minimize the failure index, which is equivalent to
maximizing the factor of safety, as proposed by Groenwold and
Haftka [19]. The objective of the stiffness-based optimization is to
minimize compliance. The optimization is carried out for several
different materials, for a range of stiffness ratios (E1=E2), and for a
combination of axial and shear loading. Results show that the
correlation between stiffness- and strength-driven designs is
generally favorable but depends on the properties of the material
under consideration and the type of loading.

In the next section a brief introduction to lamination parameters is
given, followed in Sec. III by the formulation of a failure envelope
independent of ply orientation. The envelope is subsequently used to
derive an expression for the failure index in Sec. IV. In Sec. V a
method to optimize structural stiffness is briefly discussed. Finally,
the results for several materials are compared with those found for
maximum strength in Sec. VI, followed by closing remarks.

II. Lamination Parameters
The in-plane lamination parameters as initially introduced by Tsai

and Pagano [1] and Tsai and Hahn [2] are defined as

!V1; V2; V3; V4"

#
Z

1=2

$1=2
!cos 2!!!z"; sin 2!!!z"; cos 4!!!z"; sin 4!!!z"" d!z (1)

where !z# z=h is the normalized through-the-thickness coordinate of
the layers [22], h is the total thickness of the laminate, and !!!z" is the
fiber angle at !z. The in-plane laminate stiffness matrix A then
becomes a linear function of the lamination parameters as follows:

A # h!!0 % V1!1 % V2!2 % V3!3 % V4!4" (2)

where the !i (i# 1; . . . ; 4) matrices in terms of the material
invariants [22] are given by

!0 #
U1 U4 0
U4 U1 0
0 0 U5

2
4

3
5; !1 #

U2 0 0
0 $U2 0
0 0 0

2
4

3
5

!2 #
0 0 U2=2
0 0 U2=2

U2=2 U2=2 0

2
4

3
5

!3 #
U3 $U3 0
$U3 U3 0
0 0 $U3

2
4

3
5; !4 #

0 0 U3

0 0 $U3

U3 $U3 0

2
4

3
5

The material invariants, Ui for i# 1; . . . ; 5, are defined in
AppendixA. The lamination parameters are not independent because
the trigonometric functions used in Eq. (1) are related. Considering
the trigonometric dependency, the feasible domain for the in-plane
lamination parameters is known to be defined by [11]

2V2
1 !1 $ V3" % 2V2

2 !1% V3" % V2
3 % V2

4 $ 4V1V2V4 & 1

V2
1 % V2

2 & 1 $ 1 & Vi & 1 !i# 1; . . . ; 4"
(3)

According to the definition of the lamination parameters in Eq. (1),
only two of the lamination parameters, namely, V1 and V3, are

required to fully model the in-plane stiffness of balanced symmetric
laminates in which V2 # V4 # 0. This would simplify the
aforementioned set of inequality constraints to

V3 ' 2V2
1 $ 1 $ 1 & Vi & 1 !i# 1; 3" (4)

In Sec. III, the Tsai–Wu failure criterion is used to define a design
envelope in which laminate failure is no longer dependent on the
individual ply orientations.

III. Failure Envelope
The Tsai–Wu failure criterion is a well-known first-ply failure

criterion defined as [16]

F11"
2
1 % F22"

2
2 % F66#

2
12 % F1"1 % F2"2 % 2F12"1"2 # 1 (5)

where Fi and Fij are the second- and fourth-order strength tensors,
with i, j# 1; 2; . . . ; 6, and are given in Appendix A. The material
stresses are related to the material strains via the reduced stiffness
matrixQ [16]. Allowing the failure criteria to be written in terms of
the components of the material strain tensor

G11$
2
1 %G22$

2
2 %G66$

2
12 %G1$1 %G2$2 % 2G12$1$2 # 1 (6)

where the strain coefficients, Gij, are defined in Appendix A. The
material strains !$1; $2; $12" can subsequently be related to the
laminate strains !$x; $y; $xy" using the following transformation
matrix [16]:

1
2
!1% c" 1

2
!1 $ c" s

1
2
!1 $ c" 1

2
!1% c" $s

$1
2
s 1

2
s c

2
4

3
5 (7)

where s# sin!2!" and c# cos!2!". Substituting the transformed
strains of Eq. (7) into the failure envelope Eq. (6), we obtain the
failure envelope equation in terms of laminate strains and the ply
angle in the form

F!$x; $y; $xy; s; c" # 0 (8)

The objective is to construct a design envelope within which no
failure occurs regardless of the ply orientation. To this end, we
construct the geometric “envelope,” which is defined as the surface
tangent to the family of failure surfaces, Eq. (8), parameterized using
the ply angle !. The equation for the envelope is given by

dF

d!
# 0 (9)

which can be expanded using the chain rule as

dF

d!
# c

@F

@s
$ s

@F

@c
# 0 (10)

Both F and F! are polynomial functions of c and s. Because s and
c are dependent upon the ply angle !, they are not independent but
have to satisfy the trigonometric relation

s2 % c2 $ 1# 0 (11)

The equation for the failure envelope is obtained by eliminating s
and cbetweenEqs. (8), (10), and (11). The elimination is achieved by
using Dixon’s resultant [23] for the elimination of polynomial
equations. For the sake of brevity, the algebraic details of the
application of Dixon’s resultant are omitted; however, commercial
mathematics software, such as MathematicaTM [24], provides
packages that implement Dixon’s resultant. The result yields the
following two Eqs. (12) and (13), each representing a surface traced
out by the failure criteria for all ply orientations:

4u2
6I

2
2 $ 4u6u1I

2
2 % 4

!
1 $ u2I1 $ u3I

2
1

"
!u1 $ u6"

% !u4 % u5I1"2 # 0 (12)
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the strain space that is safe regardless of the ply angle. An analytic
solution is obtained for this conservative failure envelope. It is shown
that two different envelope equations may apply depending on
material stiffness properties and failure stresses. It is also shown that
the envelope equation is a function of only two strain invariants.
However, the proposed failure envelope should not be considered as
a strain invariant failure criterion such as the one proposed by Gosse
and Christensen [21].

Stiffness-based optimization is relatively straightforward to
implement and, hence, is often used as a substitute for strength-based
design. Therefore, it is interesting to compare the strength- and
stiffness-based optimal designs. The objective of the strength-based
optimization is to minimize the failure index, which is equivalent to
maximizing the factor of safety, as proposed by Groenwold and
Haftka [19]. The objective of the stiffness-based optimization is to
minimize compliance. The optimization is carried out for several
different materials, for a range of stiffness ratios (E1=E2), and for a
combination of axial and shear loading. Results show that the
correlation between stiffness- and strength-driven designs is
generally favorable but depends on the properties of the material
under consideration and the type of loading.

In the next section a brief introduction to lamination parameters is
given, followed in Sec. III by the formulation of a failure envelope
independent of ply orientation. The envelope is subsequently used to
derive an expression for the failure index in Sec. IV. In Sec. V a
method to optimize structural stiffness is briefly discussed. Finally,
the results for several materials are compared with those found for
maximum strength in Sec. VI, followed by closing remarks.

II. Lamination Parameters
The in-plane lamination parameters as initially introduced by Tsai

and Pagano [1] and Tsai and Hahn [2] are defined as

!V1; V2; V3; V4"

#
Z

1=2

$1=2
!cos 2!!!z"; sin 2!!!z"; cos 4!!!z"; sin 4!!!z"" d!z (1)

where !z# z=h is the normalized through-the-thickness coordinate of
the layers [22], h is the total thickness of the laminate, and !!!z" is the
fiber angle at !z. The in-plane laminate stiffness matrix A then
becomes a linear function of the lamination parameters as follows:

A # h!!0 % V1!1 % V2!2 % V3!3 % V4!4" (2)

where the !i (i# 1; . . . ; 4) matrices in terms of the material
invariants [22] are given by

!0 #
U1 U4 0
U4 U1 0
0 0 U5

2
4

3
5; !1 #

U2 0 0
0 $U2 0
0 0 0

2
4

3
5

!2 #
0 0 U2=2
0 0 U2=2

U2=2 U2=2 0

2
4

3
5

!3 #
U3 $U3 0
$U3 U3 0
0 0 $U3

2
4

3
5; !4 #

0 0 U3

0 0 $U3

U3 $U3 0

2
4

3
5

The material invariants, Ui for i# 1; . . . ; 5, are defined in
AppendixA. The lamination parameters are not independent because
the trigonometric functions used in Eq. (1) are related. Considering
the trigonometric dependency, the feasible domain for the in-plane
lamination parameters is known to be defined by [11]

2V2
1 !1 $ V3" % 2V2

2 !1% V3" % V2
3 % V2

4 $ 4V1V2V4 & 1

V2
1 % V2

2 & 1 $ 1 & Vi & 1 !i# 1; . . . ; 4"
(3)

According to the definition of the lamination parameters in Eq. (1),
only two of the lamination parameters, namely, V1 and V3, are

required to fully model the in-plane stiffness of balanced symmetric
laminates in which V2 # V4 # 0. This would simplify the
aforementioned set of inequality constraints to

V3 ' 2V2
1 $ 1 $ 1 & Vi & 1 !i# 1; 3" (4)

In Sec. III, the Tsai–Wu failure criterion is used to define a design
envelope in which laminate failure is no longer dependent on the
individual ply orientations.

III. Failure Envelope
The Tsai–Wu failure criterion is a well-known first-ply failure

criterion defined as [16]

F11"
2
1 % F22"

2
2 % F66#

2
12 % F1"1 % F2"2 % 2F12"1"2 # 1 (5)

where Fi and Fij are the second- and fourth-order strength tensors,
with i, j# 1; 2; . . . ; 6, and are given in Appendix A. The material
stresses are related to the material strains via the reduced stiffness
matrixQ [16]. Allowing the failure criteria to be written in terms of
the components of the material strain tensor

G11$
2
1 %G22$

2
2 %G66$

2
12 %G1$1 %G2$2 % 2G12$1$2 # 1 (6)

where the strain coefficients, Gij, are defined in Appendix A. The
material strains !$1; $2; $12" can subsequently be related to the
laminate strains !$x; $y; $xy" using the following transformation
matrix [16]:

1
2
!1% c" 1

2
!1 $ c" s

1
2
!1 $ c" 1

2
!1% c" $s

$1
2
s 1

2
s c

2
4

3
5 (7)

where s# sin!2!" and c# cos!2!". Substituting the transformed
strains of Eq. (7) into the failure envelope Eq. (6), we obtain the
failure envelope equation in terms of laminate strains and the ply
angle in the form

F!$x; $y; $xy; s; c" # 0 (8)

The objective is to construct a design envelope within which no
failure occurs regardless of the ply orientation. To this end, we
construct the geometric “envelope,” which is defined as the surface
tangent to the family of failure surfaces, Eq. (8), parameterized using
the ply angle !. The equation for the envelope is given by

dF

d!
# 0 (9)

which can be expanded using the chain rule as

dF

d!
# c

@F

@s
$ s

@F

@c
# 0 (10)

Both F and F! are polynomial functions of c and s. Because s and
c are dependent upon the ply angle !, they are not independent but
have to satisfy the trigonometric relation

s2 % c2 $ 1# 0 (11)

The equation for the failure envelope is obtained by eliminating s
and cbetweenEqs. (8), (10), and (11). The elimination is achieved by
using Dixon’s resultant [23] for the elimination of polynomial
equations. For the sake of brevity, the algebraic details of the
application of Dixon’s resultant are omitted; however, commercial
mathematics software, such as MathematicaTM [24], provides
packages that implement Dixon’s resultant. The result yields the
following two Eqs. (12) and (13), each representing a surface traced
out by the failure criteria for all ply orientations:

4u2
6I

2
2 $ 4u6u1I

2
2 % 4

!
1 $ u2I1 $ u3I

2
1

"
!u1 $ u6"

% !u4 % u5I1"2 # 0 (12)
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the strain space that is safe regardless of the ply angle. An analytic
solution is obtained for this conservative failure envelope. It is shown
that two different envelope equations may apply depending on
material stiffness properties and failure stresses. It is also shown that
the envelope equation is a function of only two strain invariants.
However, the proposed failure envelope should not be considered as
a strain invariant failure criterion such as the one proposed by Gosse
and Christensen [21].

Stiffness-based optimization is relatively straightforward to
implement and, hence, is often used as a substitute for strength-based
design. Therefore, it is interesting to compare the strength- and
stiffness-based optimal designs. The objective of the strength-based
optimization is to minimize the failure index, which is equivalent to
maximizing the factor of safety, as proposed by Groenwold and
Haftka [19]. The objective of the stiffness-based optimization is to
minimize compliance. The optimization is carried out for several
different materials, for a range of stiffness ratios (E1=E2), and for a
combination of axial and shear loading. Results show that the
correlation between stiffness- and strength-driven designs is
generally favorable but depends on the properties of the material
under consideration and the type of loading.

In the next section a brief introduction to lamination parameters is
given, followed in Sec. III by the formulation of a failure envelope
independent of ply orientation. The envelope is subsequently used to
derive an expression for the failure index in Sec. IV. In Sec. V a
method to optimize structural stiffness is briefly discussed. Finally,
the results for several materials are compared with those found for
maximum strength in Sec. VI, followed by closing remarks.

II. Lamination Parameters
The in-plane lamination parameters as initially introduced by Tsai

and Pagano [1] and Tsai and Hahn [2] are defined as

!V1; V2; V3; V4"

#
Z

1=2

$1=2
!cos 2!!!z"; sin 2!!!z"; cos 4!!!z"; sin 4!!!z"" d!z (1)

where !z# z=h is the normalized through-the-thickness coordinate of
the layers [22], h is the total thickness of the laminate, and !!!z" is the
fiber angle at !z. The in-plane laminate stiffness matrix A then
becomes a linear function of the lamination parameters as follows:

A # h!!0 % V1!1 % V2!2 % V3!3 % V4!4" (2)

where the !i (i# 1; . . . ; 4) matrices in terms of the material
invariants [22] are given by

!0 #
U1 U4 0
U4 U1 0
0 0 U5

2
4

3
5; !1 #

U2 0 0
0 $U2 0
0 0 0

2
4

3
5

!2 #
0 0 U2=2
0 0 U2=2

U2=2 U2=2 0

2
4

3
5

!3 #
U3 $U3 0
$U3 U3 0
0 0 $U3

2
4

3
5; !4 #

0 0 U3

0 0 $U3

U3 $U3 0

2
4

3
5

The material invariants, Ui for i# 1; . . . ; 5, are defined in
AppendixA. The lamination parameters are not independent because
the trigonometric functions used in Eq. (1) are related. Considering
the trigonometric dependency, the feasible domain for the in-plane
lamination parameters is known to be defined by [11]

2V2
1 !1 $ V3" % 2V2

2 !1% V3" % V2
3 % V2

4 $ 4V1V2V4 & 1

V2
1 % V2

2 & 1 $ 1 & Vi & 1 !i# 1; . . . ; 4"
(3)

According to the definition of the lamination parameters in Eq. (1),
only two of the lamination parameters, namely, V1 and V3, are

required to fully model the in-plane stiffness of balanced symmetric
laminates in which V2 # V4 # 0. This would simplify the
aforementioned set of inequality constraints to

V3 ' 2V2
1 $ 1 $ 1 & Vi & 1 !i# 1; 3" (4)

In Sec. III, the Tsai–Wu failure criterion is used to define a design
envelope in which laminate failure is no longer dependent on the
individual ply orientations.

III. Failure Envelope
The Tsai–Wu failure criterion is a well-known first-ply failure

criterion defined as [16]

F11"
2
1 % F22"

2
2 % F66#

2
12 % F1"1 % F2"2 % 2F12"1"2 # 1 (5)

where Fi and Fij are the second- and fourth-order strength tensors,
with i, j# 1; 2; . . . ; 6, and are given in Appendix A. The material
stresses are related to the material strains via the reduced stiffness
matrixQ [16]. Allowing the failure criteria to be written in terms of
the components of the material strain tensor

G11$
2
1 %G22$

2
2 %G66$

2
12 %G1$1 %G2$2 % 2G12$1$2 # 1 (6)

where the strain coefficients, Gij, are defined in Appendix A. The
material strains !$1; $2; $12" can subsequently be related to the
laminate strains !$x; $y; $xy" using the following transformation
matrix [16]:

1
2
!1% c" 1

2
!1 $ c" s

1
2
!1 $ c" 1

2
!1% c" $s

$1
2
s 1

2
s c

2
4

3
5 (7)

where s# sin!2!" and c# cos!2!". Substituting the transformed
strains of Eq. (7) into the failure envelope Eq. (6), we obtain the
failure envelope equation in terms of laminate strains and the ply
angle in the form

F!$x; $y; $xy; s; c" # 0 (8)

The objective is to construct a design envelope within which no
failure occurs regardless of the ply orientation. To this end, we
construct the geometric “envelope,” which is defined as the surface
tangent to the family of failure surfaces, Eq. (8), parameterized using
the ply angle !. The equation for the envelope is given by

dF

d!
# 0 (9)

which can be expanded using the chain rule as

dF

d!
# c

@F

@s
$ s

@F

@c
# 0 (10)

Both F and F! are polynomial functions of c and s. Because s and
c are dependent upon the ply angle !, they are not independent but
have to satisfy the trigonometric relation

s2 % c2 $ 1# 0 (11)

The equation for the failure envelope is obtained by eliminating s
and cbetweenEqs. (8), (10), and (11). The elimination is achieved by
using Dixon’s resultant [23] for the elimination of polynomial
equations. For the sake of brevity, the algebraic details of the
application of Dixon’s resultant are omitted; however, commercial
mathematics software, such as MathematicaTM [24], provides
packages that implement Dixon’s resultant. The result yields the
following two Eqs. (12) and (13), each representing a surface traced
out by the failure criteria for all ply orientations:

4u2
6I

2
2 $ 4u6u1I

2
2 % 4

!
1 $ u2I1 $ u3I

2
1

"
!u1 $ u6"

% !u4 % u5I1"2 # 0 (12)
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cases (!! 0), whereas the lines at the bottom of the parabola
correspond to the pure shear case (!! 1). It should be kept in mind
thatV"

1 ! 1,V"
3 ! 1 corresponds to a laminate with only 0 degfibers,

whereas V"
1 ! 0, V"

3 !#1 corresponds to one with a $45 deg lay
up. From these figures it is also clear that the designs for maximum
compressive strength deviate more from the stiffness-driven optima
than those for maximum tensile strength.

Looking at AS4 (Fig. 5a), pure tension and pure shear result in
identical laminate lay ups, 0 and $45 deg, respectively, for both
stiffness- and strength-driven optimization. However, in the case of
pure compression, the strength-based design includes a small
percentage (<5%) of 90 degfibers. This improves the tensile strength
in the direction perpendicular to the loading, reducing the laminate’s
Poisson ratio and, hence, increasing the laminate’s strength slightly.

The results for boron/epoxy (B5.6) shown in Fig. 5b also indicate
that$45 deg yields the best design in the case of pure shear loading.
It can also be seen that for the tension/shear designs optimal lay ups
are all angle-ply laminates. The large difference between the
stiffness- and strength-driven optima for the compression/shear load
case is also clearly visible.

The exact behavior of the optimal fiber orientation for maximum
strength is a complex function of material properties and failure
allowables [28]. The clear dependency on the individual material
properties is to be expected due to the strong material dependence of
the Tsai–Wu failure criterion [19]. Identifying which material
properties or ratios thereof and their influence on the degree of
correlation between stiffness- and strength-optimized designswill be
the subject of future research.

VII. Conclusions
The implementation of the Tsai–Wu failure criterion in the

lamination parameter design space is presented. Analytical
expressions are found representing the conservative failure envelope
in the strain space. The equations for the envelope are functions of
only two strain invariants and do not depend explicitly on the
stacking sequence. The active envelope equation can be used to
formulate a failure index related to the factor of safety. The failure
index is used to formulate the optimization problem of designing
panels for maximum strength for both cases of pure in-plane loading
and combined in-plane and bending loads. The derived envelope is
shown to accurately represent the factor of safety of practical
laminates under in-plane loading; however, for bending dominated
problems it may be too conservative.

Panels under combined axial and shear loads are designed for
maximum strength and stiffness. The strength-optimization problem
is solved using a successive approximation methodology. An
approximation of the failure index is proposed and implemented.
Comparing the results of strength- and stiffness-driven optima for
various materials and load conditions, it becomes apparent that the
difference between the two optima depends strongly on the material
properties and loading. Strength-driven optimization can lead to an
increase of up to 48% in the factor of safety compared with stiffness-
based designs. It is thus concluded that, although stiffness
maximization might reasonably serve as an easier to evaluate
surrogate for the preliminary design of composite structures, the
derived conservative failure index offers a more attractive and easier
to implement alternative.

Two open problems remain. The first is to investigate and
understand how the shape of the conservative failure envelope
depends on thematerial stiffness properties and failure stresses. Such
an analysis would also be quite useful for extending the present
formulation to more complex failure criteria that differentiate
between different failure modes, such as Hashin’s criterion. The
second is the convexity of the failure index function in the lamination
parameter space. Convexity would mean that strength-optimal
designs are unique, and that this unique optimum can be converged
starting from arbitrary initial designs.Numerical experience seems to
indicate that the failure index is indeed convex or nearly so.Although
the convexity of the failure index in strain space is straightforward to

demonstrate, whether or not the convexity carries over to the
lamination parameter space is more challenging to assess.

Appendix A: Material Invariants
Thematerial invariants,Ui for i! 1; . . . ; 5, are defined in terms of

lamina reduced stiffnesses by [22]:

U1 ! %3Q11 & 3Q22 & 2Q12 & 4Q66'=8
U2 ! %Q11 #Q22'=2; U3 ! %Q11 &Q22 # 2Q12 # 4Q66'=8

U4 ! %Q11 &Q22 & 6Q12 # 4Q66'=8
U5 ! %Q11 &Q22 # 2Q12 & 4Q66'=8

The coefficients for the Tsai–Wu failure criterion [Eq. (5)] are
given by

F11 !
1

XtXc

F22 !
1

YtYc

F1 !
1

Xt

# 1

Xc

F2 !
1

Yt

# 1

Yc

F12 !
#1

2
!!!!!!!!!!!!!!!!!!!!
XtXcYtYc

p F66 !
1

S2

where Xc, Xt, Yc, Yt, and S are the failure stresses in compression,
tension, and shear in the principle material directions. F12 is known
as the interaction coefficient [16] and can be approximated with the
equivalent von Mises yield criterion for composites. The material
stresses and strains can be related via the stiffnessmatrix, yielding the
coefficients for the strain equivalent of the Tsai–Wu failure criterion
[Eq. (6)], given by:

G11 !Q2
11F11 &Q2

12F22 & 2F12Q11Q12

G22 !Q2
12F11 &Q2

22F22 & 2F12Q12Q22

G1 !Q11F1 &Q12F2 G2 !Q12F1 &Q22F2

G12 !Q11Q12F11 &Q12Q22F22 & F12Q
2
12 & F12Q11Q22

G66 ! 4Q2
66F66

Additionally, when solving for the feasible design region, the
formulation can be simplified by defining the following materials
invariants:

u1 !G11 &G22 # 2G12; u2 ! %G1 &G2'=2
u3 ! %G11 &G22 & 2G12'=4; u4 !G1 # G2

u5 !G11 # G22; u6 !G66

Appendix B: Material Properties

Table B1 Tabulation of the properties of the materials mentioned in
this paper [16]

Carbon/
PEEK

Carbon/
epoxy

Boron/
epoxy

(AS4) (IM6) (B5.6)

Longitudinal modulus (E1, GPa) 142.0 177.0 201.0
Transverse modulus (E2, GPa) 10.3 10.8 21.7
Shear modulus (G12, GPa) 7.2 7.6 5.4
Poisson’s ratio (!12) 0.27 0.27 0.17
Longitudinal tensile strength
(Xt, MPa)

2280.0 2860.0 1380.0

Longitudinal compressive strength
(Xc, MPa)

1440.0 1875.0 1600.0

Transverse tensile strength (Yt, MPa) 57.0 49.0 56.6
Transverse compressive strength
(Yc, MPa)

228.0 246.0 125.0

Shear strength (S, MPa) 71.0 83.0 62.6
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Failure

• Failure is governed by this equation:

• Needs to be written for lamination parameters, i.e. independent of the ply 
angles: eliminate the ply angle by imposing two additional equations
• The trigonometric relation cos! 𝜃 + sin! 𝜃 = 1
• A surface tangential to all failure functions for each θ, "#"$ = 0

the strain space that is safe regardless of the ply angle. An analytic
solution is obtained for this conservative failure envelope. It is shown
that two different envelope equations may apply depending on
material stiffness properties and failure stresses. It is also shown that
the envelope equation is a function of only two strain invariants.
However, the proposed failure envelope should not be considered as
a strain invariant failure criterion such as the one proposed by Gosse
and Christensen [21].

Stiffness-based optimization is relatively straightforward to
implement and, hence, is often used as a substitute for strength-based
design. Therefore, it is interesting to compare the strength- and
stiffness-based optimal designs. The objective of the strength-based
optimization is to minimize the failure index, which is equivalent to
maximizing the factor of safety, as proposed by Groenwold and
Haftka [19]. The objective of the stiffness-based optimization is to
minimize compliance. The optimization is carried out for several
different materials, for a range of stiffness ratios (E1=E2), and for a
combination of axial and shear loading. Results show that the
correlation between stiffness- and strength-driven designs is
generally favorable but depends on the properties of the material
under consideration and the type of loading.

In the next section a brief introduction to lamination parameters is
given, followed in Sec. III by the formulation of a failure envelope
independent of ply orientation. The envelope is subsequently used to
derive an expression for the failure index in Sec. IV. In Sec. V a
method to optimize structural stiffness is briefly discussed. Finally,
the results for several materials are compared with those found for
maximum strength in Sec. VI, followed by closing remarks.

II. Lamination Parameters
The in-plane lamination parameters as initially introduced by Tsai

and Pagano [1] and Tsai and Hahn [2] are defined as

!V1; V2; V3; V4"

#
Z

1=2

$1=2
!cos 2!!!z"; sin 2!!!z"; cos 4!!!z"; sin 4!!!z"" d!z (1)

where !z# z=h is the normalized through-the-thickness coordinate of
the layers [22], h is the total thickness of the laminate, and !!!z" is the
fiber angle at !z. The in-plane laminate stiffness matrix A then
becomes a linear function of the lamination parameters as follows:

A # h!!0 % V1!1 % V2!2 % V3!3 % V4!4" (2)

where the !i (i# 1; . . . ; 4) matrices in terms of the material
invariants [22] are given by

!0 #
U1 U4 0
U4 U1 0
0 0 U5

2
4

3
5; !1 #

U2 0 0
0 $U2 0
0 0 0

2
4

3
5

!2 #
0 0 U2=2
0 0 U2=2

U2=2 U2=2 0

2
4

3
5

!3 #
U3 $U3 0
$U3 U3 0
0 0 $U3

2
4

3
5; !4 #

0 0 U3

0 0 $U3

U3 $U3 0

2
4

3
5

The material invariants, Ui for i# 1; . . . ; 5, are defined in
AppendixA. The lamination parameters are not independent because
the trigonometric functions used in Eq. (1) are related. Considering
the trigonometric dependency, the feasible domain for the in-plane
lamination parameters is known to be defined by [11]

2V2
1 !1 $ V3" % 2V2

2 !1% V3" % V2
3 % V2

4 $ 4V1V2V4 & 1

V2
1 % V2

2 & 1 $ 1 & Vi & 1 !i# 1; . . . ; 4"
(3)

According to the definition of the lamination parameters in Eq. (1),
only two of the lamination parameters, namely, V1 and V3, are

required to fully model the in-plane stiffness of balanced symmetric
laminates in which V2 # V4 # 0. This would simplify the
aforementioned set of inequality constraints to

V3 ' 2V2
1 $ 1 $ 1 & Vi & 1 !i# 1; 3" (4)

In Sec. III, the Tsai–Wu failure criterion is used to define a design
envelope in which laminate failure is no longer dependent on the
individual ply orientations.

III. Failure Envelope
The Tsai–Wu failure criterion is a well-known first-ply failure

criterion defined as [16]

F11"
2
1 % F22"

2
2 % F66#

2
12 % F1"1 % F2"2 % 2F12"1"2 # 1 (5)

where Fi and Fij are the second- and fourth-order strength tensors,
with i, j# 1; 2; . . . ; 6, and are given in Appendix A. The material
stresses are related to the material strains via the reduced stiffness
matrixQ [16]. Allowing the failure criteria to be written in terms of
the components of the material strain tensor

G11$
2
1 %G22$

2
2 %G66$

2
12 %G1$1 %G2$2 % 2G12$1$2 # 1 (6)

where the strain coefficients, Gij, are defined in Appendix A. The
material strains !$1; $2; $12" can subsequently be related to the
laminate strains !$x; $y; $xy" using the following transformation
matrix [16]:

1
2
!1% c" 1

2
!1 $ c" s

1
2
!1 $ c" 1

2
!1% c" $s

$1
2
s 1

2
s c

2
4

3
5 (7)

where s# sin!2!" and c# cos!2!". Substituting the transformed
strains of Eq. (7) into the failure envelope Eq. (6), we obtain the
failure envelope equation in terms of laminate strains and the ply
angle in the form

F!$x; $y; $xy; s; c" # 0 (8)

The objective is to construct a design envelope within which no
failure occurs regardless of the ply orientation. To this end, we
construct the geometric “envelope,” which is defined as the surface
tangent to the family of failure surfaces, Eq. (8), parameterized using
the ply angle !. The equation for the envelope is given by

dF

d!
# 0 (9)

which can be expanded using the chain rule as

dF

d!
# c

@F

@s
$ s

@F

@c
# 0 (10)

Both F and F! are polynomial functions of c and s. Because s and
c are dependent upon the ply angle !, they are not independent but
have to satisfy the trigonometric relation

s2 % c2 $ 1# 0 (11)

The equation for the failure envelope is obtained by eliminating s
and cbetweenEqs. (8), (10), and (11). The elimination is achieved by
using Dixon’s resultant [23] for the elimination of polynomial
equations. For the sake of brevity, the algebraic details of the
application of Dixon’s resultant are omitted; however, commercial
mathematics software, such as MathematicaTM [24], provides
packages that implement Dixon’s resultant. The result yields the
following two Eqs. (12) and (13), each representing a surface traced
out by the failure criteria for all ply orientations:

4u2
6I

2
2 $ 4u6u1I

2
2 % 4

!
1 $ u2I1 $ u3I

2
1

"
!u1 $ u6"

% !u4 % u5I1"2 # 0 (12)
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Failure envelope examples

u2
1I

4
2 ! I22"u4 # u5I1$2 ! 2u1I

2
2

!
1 ! u2I1 ! u3I

2
1

"

#
!
1 ! u2I1 ! u3I

2
1

"
2 % 0 (13)

where I1 is the volumetric strain invariant and I2 is the maximum
shear strain [25] given by

I1 % !x # !y; I2 %
####################################$
!x ! !y

2

%
2

# !2xy

s
(14)

The terms ui, i% "1; . . . ; 6$ are defined in terms of the strain
coefficients of Eq. (6) as listed in Appendix A. It should be clear that
the feasible design space described by Eqs. (12) and (13) is material
dependent, because ui is a function of strain coefficients,Gij, which
is a function of the reduced stiffness matrixQ and material strength
coefficients Fi, Fij. It should also be noted that the failure envelopes
prescribed by Eqs. (12) and (13) represent a conservative
approximation of the Tsai–Wu failure criterion in terms of strain
invariants and should not be confused with a strain invariant failure
criterion such as that presented by Gosse and Christensen [21] and,
hence, should not be considered as a new failure criterion.

Upon inspection, the first envelope (12) is a second-order equation
with respect to the strains, and the second envelope (13) is of the
fourth order. These two envelope equations do not intersect one
another, but may become tangent, as shown in Fig. 1. The safe region
is the region common to the Tsai–Wu failure envelope for all angles.
As such, the envelope equation describing the inner envelope is
always to be used. Whether the inner envelope is represented by the
second- or fourth-order equations is dependent on the properties of
the material under consideration. When the fourth-order equation
describes the inner envelope, it is usually factorable into the product
of two equations leading to a self-intersecting nonsmooth envelope.

To gain a better understanding of the feasible design envelopes,
they are plotted for specific materials. As an example, consider the
materials listed inAppendix B, Table B1,which have stiffness ratios,
E1=E2, ranging from approximately 9 to 17. In Fig. 1, the actual
strain envelope for the various material orientation angles are plotted
together with the two curves prescribed by the derived equations. In
this case, !xy has been set to zero; however, similar results can be
generated for a range of !xy values. It is clear from the figure that in
each case one of the two equations accurately prescribes the inner
strain envelope, which is in fact independent of the fiber orientation.
A method of selecting the critical envelope equation is treated in
Sec. IV.

As can be seen in Fig. 1, the conservative design envelopes
prescribed by Eqs. (12) and (13) are convex in the strain space, as

they are the intersection of the infinite number of convex sets defined
by the Tsai–Wu failure criterion. In Sec. IV, a formulation for the
derived design envelope in terms of a safety factor is presented.

IV. Formulation of a Strength Constraint
Equations (12) and (13) represent the failure envelope in the strain

design space. To simplify the applicability as a constraint, or
alternatively as an objective function, for optimization, the equations
of the design envelope can be reformulated in terms of the safety
factor, ", which can be defined as

"% b

a
(15)

where a is the distance between the origin and an arbitrary pointP in
the feasible design space, and b is the length of the vector from the
origin through point P to the point on the envelope boundary, P&, as
illustrated in Fig. 2.

In essence," is a scaling factor that, when applied to the values of !
at a generic point P representing applied strains, gives the values of
!& at the corresponding point on the boundary, P&. Therefore, the
strain invariants, I1 and I2, can be related to those at the boundary of
the failure envelopes by substituting I&1 % "I1 and I&2 % "I2 into the
failure envelope Eqs. (12) and (13), yielding two polynomials in
terms of ":

f1""$ % a12"
2 # a11"# a10

f2""$ % a24"
4 # a23"

3 # a22"
2 # a21"# a20

(16)

where the coefficients aij are functions of the strain invariants I1 and
I2 and are listed in Appendix C. Solving for " yields up to six roots;
the equation with the smallest positive real root represents the active
envelope, because the smallest safety factor is critical. The active
envelope is not independent of the strains. It is also noted that the
fourth-order envelope self-intersects and can therefore be thought of
as two smooth curves, as can be seen in Fig. 1c. Corresponding to
each of these two smooth curves is a positive root ", which is a
continuous function of strains.

Groenwold and Haftka [19] first suggested using a factor of safety
for strength optimization by directly maximizing ". However, " is
not differentiable near the origin, and this can lead to numerical
problems. To remedy this, the failure index, r"!$, is defined as the
inverse of the factor of safety squared, which guarantees
differentiability at all points within the failure envelope:

r"!$ % 1

"2
(17)

-0.024
0-0.024

0.02

0.02

0

-0.025

0.02

0.02

0

-0.025
0

0

0
-0.014

-0.014 0.008

0.008

a) Carbon - PEEK(AS4) b) Carbon - Epoxy(IM6) c) Boron - Epoxy(B5.6)

Second-Order Second-Order Second-Order
Fourth-Order Fourth-Order Fourth-Order

deg deg deg

Fig. 1 Strain envelopes for various fiber orientation angles, including the second- and fourth-order solutions derived in Eqs. (12) and (13) (!x vs !y, with
!xy ! 0).
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u2
1I

4
2 ! I22"u4 # u5I1$2 ! 2u1I

2
2

!
1 ! u2I1 ! u3I

2
1

"

#
!
1 ! u2I1 ! u3I

2
1

"
2 % 0 (13)

where I1 is the volumetric strain invariant and I2 is the maximum
shear strain [25] given by

I1 % !x # !y; I2 %
####################################$
!x ! !y

2

%
2

# !2xy

s
(14)

The terms ui, i% "1; . . . ; 6$ are defined in terms of the strain
coefficients of Eq. (6) as listed in Appendix A. It should be clear that
the feasible design space described by Eqs. (12) and (13) is material
dependent, because ui is a function of strain coefficients,Gij, which
is a function of the reduced stiffness matrixQ and material strength
coefficients Fi, Fij. It should also be noted that the failure envelopes
prescribed by Eqs. (12) and (13) represent a conservative
approximation of the Tsai–Wu failure criterion in terms of strain
invariants and should not be confused with a strain invariant failure
criterion such as that presented by Gosse and Christensen [21] and,
hence, should not be considered as a new failure criterion.

Upon inspection, the first envelope (12) is a second-order equation
with respect to the strains, and the second envelope (13) is of the
fourth order. These two envelope equations do not intersect one
another, but may become tangent, as shown in Fig. 1. The safe region
is the region common to the Tsai–Wu failure envelope for all angles.
As such, the envelope equation describing the inner envelope is
always to be used. Whether the inner envelope is represented by the
second- or fourth-order equations is dependent on the properties of
the material under consideration. When the fourth-order equation
describes the inner envelope, it is usually factorable into the product
of two equations leading to a self-intersecting nonsmooth envelope.

To gain a better understanding of the feasible design envelopes,
they are plotted for specific materials. As an example, consider the
materials listed inAppendix B, Table B1,which have stiffness ratios,
E1=E2, ranging from approximately 9 to 17. In Fig. 1, the actual
strain envelope for the various material orientation angles are plotted
together with the two curves prescribed by the derived equations. In
this case, !xy has been set to zero; however, similar results can be
generated for a range of !xy values. It is clear from the figure that in
each case one of the two equations accurately prescribes the inner
strain envelope, which is in fact independent of the fiber orientation.
A method of selecting the critical envelope equation is treated in
Sec. IV.

As can be seen in Fig. 1, the conservative design envelopes
prescribed by Eqs. (12) and (13) are convex in the strain space, as

they are the intersection of the infinite number of convex sets defined
by the Tsai–Wu failure criterion. In Sec. IV, a formulation for the
derived design envelope in terms of a safety factor is presented.

IV. Formulation of a Strength Constraint
Equations (12) and (13) represent the failure envelope in the strain

design space. To simplify the applicability as a constraint, or
alternatively as an objective function, for optimization, the equations
of the design envelope can be reformulated in terms of the safety
factor, ", which can be defined as

"% b

a
(15)

where a is the distance between the origin and an arbitrary pointP in
the feasible design space, and b is the length of the vector from the
origin through point P to the point on the envelope boundary, P&, as
illustrated in Fig. 2.

In essence," is a scaling factor that, when applied to the values of !
at a generic point P representing applied strains, gives the values of
!& at the corresponding point on the boundary, P&. Therefore, the
strain invariants, I1 and I2, can be related to those at the boundary of
the failure envelopes by substituting I&1 % "I1 and I&2 % "I2 into the
failure envelope Eqs. (12) and (13), yielding two polynomials in
terms of ":

f1""$ % a12"
2 # a11"# a10

f2""$ % a24"
4 # a23"

3 # a22"
2 # a21"# a20

(16)

where the coefficients aij are functions of the strain invariants I1 and
I2 and are listed in Appendix C. Solving for " yields up to six roots;
the equation with the smallest positive real root represents the active
envelope, because the smallest safety factor is critical. The active
envelope is not independent of the strains. It is also noted that the
fourth-order envelope self-intersects and can therefore be thought of
as two smooth curves, as can be seen in Fig. 1c. Corresponding to
each of these two smooth curves is a positive root ", which is a
continuous function of strains.

Groenwold and Haftka [19] first suggested using a factor of safety
for strength optimization by directly maximizing ". However, " is
not differentiable near the origin, and this can lead to numerical
problems. To remedy this, the failure index, r"!$, is defined as the
inverse of the factor of safety squared, which guarantees
differentiability at all points within the failure envelope:

r"!$ % 1

"2
(17)
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Fig. 1 Strain envelopes for various fiber orientation angles, including the second- and fourth-order solutions derived in Eqs. (12) and (13) (!x vs !y, with
!xy ! 0).
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Effect of fatigue loads
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Design for number of flight cycles

• Standard practice: apply knock-down factor to material allowables to 
ensure a no-fatigue design.

• Proposed solution: design the lifting surface to fail at a prescribed amount 
of flights.

• Methodology: combine probability of failure at a certain number of cycles 
with Tsai-Wu failure theorem.
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Applied load

Determination of 
stresses

Number of cycles 
to failure

Degradation in 
residual strength

Probability of 
failure

Degradation of 
statistical 

parameters

First Ply 
failure 
theory

No

Y
es

Number of cycles

Classical lamination 
theory
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Applied loads are obtained from TWIST

Lowak, H., DeJonge, J., Franz, J., and Schütz, D., “MINITWIST - A shortened version of TWIST,” NLR MP79018U, 1979. 
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Manufacturing constraints



50

NASA rules for composite manufacturing
• Symmetric laminates: This rule is generally applied to avoid out of plane 

deformation during the curing process, due to the in-plane extension of the 
laminate.

• Balanced laminates: same number of plies with orientation equal to θ and -θ
so that A16=A26=0.

• Contiguity rule: no more than 4 successive plies with the same orientation.
• Blending rule: ply continuity need to be ensured from one panel to another.
• Restricted angle: a limited set of ply orientation is available to build the 

laminate. Known as the classical orientation, they are equivalent to 
[0/90/±45].

• Disorientation rule: no more than ±45 difference between successive layers 
in order to avoid inter-plies stresses.

• Percentage rule: a minimum of 10% of the plies must be in each of the 
following direction: 0, 45, 90 and -45. This should ensure that the structure 
is robust enough to carry secondary loading.
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Blending constraints

• Inner vs outer blending.

• Blending can be defined:
• During stacking sequence retrieval.
• During continuous optimization.

Composite Parametrization Aeroelastic Tailoring Composite Constraints Aero Performance Constraint

Local panel optimization and blending

First European MDO Workshop - 6/17 Do not reproduce/use without permission

Local panel optimization

Lift 
Weight 
Fuel 
Engine 
Landing gear

Different blending definitions

When to apply blending constraints? Gradient-based or genetic algorithm?

Optimized weight:
• Gradient-based optimum 448, 1 kg
• After stacking sequence retrieval 634, 7 kg

! 42% weight penalty

Composite Parametrization Aeroelastic Tailoring Composite Constraints Aero Performance Constraint

Continuous blending constraints [2]

First European MDO Workshop - 7/17 Do not reproduce/use without permission
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[2]Macquart, T., Bordogna, M. T., Lancelot, P., and De Breuker. R., (2016). Derivation and application of blending constraints in lamination
parameter space for composite optimisation. In Composite Structures, 135, 224-235. doi:http://dx.doi.org/10.1016/j.compstruct.2015.09.016.
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Blending in lamination parameter space

Composite Parametrization Aeroelastic Tailoring Composite Constraints Aero Performance Constraint

Continuous blending constraints [2]

First European MDO Workshop - 7/17 Do not reproduce/use without permission
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Flight shape constraint
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1g shape constraint
• 1g shape or flight shape or cruise shape is given by the aerodynamics 

department.
• Often multiple points are defined during a cruise phase.
• Cruise shape depends on stiffness distribution of the wing and the jig 

shape.
• Jig shape optimization can be approached in two ways:

• Classical: take 1g loads and 1g shape and retrieve jig shape by inverting 1g 
loads.

• Advanced: include jig twist as design variables.

5

5.4. MORPHING

ψs

(a) Shear morphing of a wing. (Source:
De Breuker et al. (2011))

φt

(b) Twist morphing of a wing. (Source:
De Breuker et al. (2011))

θf

(c) Fold morphing of a wing. (Source:
De Breuker et al. (2011)) (d) Camber morphing of an airfoil.

Span extension

Inner fixed wing

Overlapping section

Outer moving wing

(e) Span extension of a wing. Each section has its own specific cross-section
and gets elongated or retracted as required during span extension.

Figure 5.11: Schematic illustration of the different morphing mechanisms.
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Objectives
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Objectives

• Structural mass minimization à payload increase.

• Range
𝑅 =

𝑉
𝑔 % 𝑆𝐹𝐶

𝐶!
𝐶"
𝑙𝑛

𝑊#

𝑊$

• Material coupling is not a goal in itself.
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Types of loads

• Flight loads
• Manoeuvre/static loads
• Dynamic loads

• Ground loads
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Dynamic loads
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V-n diagram
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Correlated loads

 
Figure 13: Yaw manoeuvre simulation (k=0.5): rudder 
deflection, sideslip angle and correlated bending and 
torsion loads at the VTP root 

The “overswing” of the sideslip angle is responsible for the 
maximum torsion loads. The extent of the “overswing” is 
heavily dependent on the damping value k of the yaw 
controller. A large damping can completely inhibit an 
overswing, in which case the phases 2 (overswing) and 3 
(equilibrium yaw) are virtually identical. However, such a 
large damping can be detrimental wrt. handling quality 
(HQ) criteria. In a landing scenario, the rudder is used to 
compensate lateral gusts and for aligning with the runway 
in cross wind conditions. Excessive yaw damping may 
result in a sluggish response of the heading angle to 
rudder input, which may be unacceptable. Therefore an 
adequate compromise between structural loads and HQ 
criteria has to be found when designing the control laws. 

A similar investigation of yaw manoeuvre loads was 
performed in [19]. Instead of modifying the controller 
parameters, the VTP span was varied and its effect on the 
loads versus the minimum control speed VMC as a 
representative handling quality parameter was studied. 

4.1.3. Trim Solutions 
An alternative to determine critical loads by closed loop 
dynamic simulations, is the formulation of trim cases which 
represent the characteristics of the aforementioned 
phases of yaw manoeuvre. These trim conditions can be 
defined in a straight forward manner for the “onset”, 
“equilibrium yaw” and “rudder return”. However, the 
“overswing” phase is inherently dynamic in nature. It is not 
possible to determine meaningful criteria for a trim 
condition to calculate the maximum side slip angle other 
than rather crude overswing factors.  

 
Figure 14: Loads envelopes of different dynamic 
simulations compared to the trim results. 

Figure 14 shows the correlated loads envelope spanned 
by the trim solutions compared to the corresponding 
dynamic simulations for an undamped (k=0) moderately 
damped (k=0.5) and a highly damped (k=2) case, 
respectively. 

Trim conditions for the onset and rudder return are in very 
good agreement with the undamped dynamic simulation. 
This is to be expected, since these conditions specify the 
trim definitions at these points. Similarly, the point for the 
equilibrium yaw with the steady sideslip perfectly agrees 
with the highly damped case. For the overswing case, it is 
not possible to adequately define a trim solution, unless 
the control law can ensure that no overswing of the 
sideslip angle is permitted. As a contingency measure an 
overswing factor might be imposed on the equilibrium 
sideslip angle to crudely approximate the expected 
maximum side slip angle.  

4.2. The Roll Manoeuvre 
The roll manoeuvre is described in paragraph CS 25.349 
of the regulations. The manoeuvre has to be simulated for 
two different load factor conditions, at 2/3 of the maximum 
load factor of the V-n diagram (CS 25.333), namely Nz = 
1.67 g and at Nz = 0 g. The deflection of the ailerons 
introduces a significant torsional moment. Hence, the roll 
manoeuvre is usually the dimensioning load condition for 
the outer wing. Likewise the roll manoeuvre can be 
characterized by different phases: 

0. “Initial Trim”: The roll manoeuvre starts from a 
vertical pitching motion, corresponding to the 
load factors 0 g and 1.67 g. 

1. “Onset”: The aileron is suddenly deflected. 

2. “Equilibrium Roll”: Continuing the full aileron 
command, a state of constant roll rate according 
to handling quality constraints is reached. 

3. “Aileron Return”: After achieving a steady roll 
rate, a half opposite aileron deflection to stop the 
roll is commanded. 

The corresponding constraints and requirements for the 
steady and accelerated roll for the different design speeds 
are specified in paragraph CS 25.349 of subpart C 
“Structure” and also in subpart B “Flight” of the 
regulations. 

4.2.1. Flight Control Laws and Pilot Model 
The main difficulty during a dynamic simulation of the roll 
manoeuvre is to keep the load factor constant. The same 
cascading controller concept as in the case of the yaw 
manoeuvre was used to deflect the elevators during the 
pitching motion in order to keep the load factor at the 
required value. Neither a differential aileron setting for the 
roll command was used in the simulation, nor did the 
model did not include any actuator dynamics. Further, no 
specific requirements for the roll control function were 
formulated, other than a target roll rate of 15°/s, as the 
main purpose was to demonstrate a case where dynamic 
structural loads are strongly excited. 
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Load envelopes

 
Figure 13: Yaw manoeuvre simulation (k=0.5): rudder 
deflection, sideslip angle and correlated bending and 
torsion loads at the VTP root 
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Trim conditions for the onset and rudder return are in very 
good agreement with the undamped dynamic simulation. 
This is to be expected, since these conditions specify the 
trim definitions at these points. Similarly, the point for the 
equilibrium yaw with the steady sideslip perfectly agrees 
with the highly damped case. For the overswing case, it is 
not possible to adequately define a trim solution, unless 
the control law can ensure that no overswing of the 
sideslip angle is permitted. As a contingency measure an 
overswing factor might be imposed on the equilibrium 
sideslip angle to crudely approximate the expected 
maximum side slip angle.  

4.2. The Roll Manoeuvre 
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of the regulations. The manoeuvre has to be simulated for 
two different load factor conditions, at 2/3 of the maximum 
load factor of the V-n diagram (CS 25.333), namely Nz = 
1.67 g and at Nz = 0 g. The deflection of the ailerons 
introduces a significant torsional moment. Hence, the roll 
manoeuvre is usually the dimensioning load condition for 
the outer wing. Likewise the roll manoeuvre can be 
characterized by different phases: 

0. “Initial Trim”: The roll manoeuvre starts from a 
vertical pitching motion, corresponding to the 
load factors 0 g and 1.67 g. 

1. “Onset”: The aileron is suddenly deflected. 

2. “Equilibrium Roll”: Continuing the full aileron 
command, a state of constant roll rate according 
to handling quality constraints is reached. 

3. “Aileron Return”: After achieving a steady roll 
rate, a half opposite aileron deflection to stop the 
roll is commanded. 

The corresponding constraints and requirements for the 
steady and accelerated roll for the different design speeds 
are specified in paragraph CS 25.349 of subpart C 
“Structure” and also in subpart B “Flight” of the 
regulations. 

4.2.1. Flight Control Laws and Pilot Model 
The main difficulty during a dynamic simulation of the roll 
manoeuvre is to keep the load factor constant. The same 
cascading controller concept as in the case of the yaw 
manoeuvre was used to deflect the elevators during the 
pitching motion in order to keep the load factor at the 
required value. Neither a differential aileron setting for the 
roll command was used in the simulation, nor did the 
model did not include any actuator dynamics. Further, no 
specific requirements for the roll control function were 
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main purpose was to demonstrate a case where dynamic 
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Typical number of load cases

Flight Points 50

Mass Cases 100

Control Surface Configuration 10

Manoeuvres and Gusts 50

Control Laws 4

Total Number of Cases 10,000,000



64

Load case selection

• A significant amount of load cases need to be considered to size the wing 
structure.

• The entire loads process is too time consuming.

• Only a few load cases are sizing.

• The sizing load cases could change during the design process.
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Aeroelastically tailored results
• Typical tailored wing results

• Effect of aileron effectiveness

• Effect of 1g shape constraint and free jig shape

• Effect of MLA

• Effect of fatigue constraints

• Effect of blending

• Criticality of gust loads
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Design regions

8

8. AEROELASTIC TAILORING OF THE COMMON RESEARCH MODEL

Top Skin Bottom Skin Spars

Figure 8.4: CRM laminate distribution and corresponding stiffness directions of the wing with
predefined laminates.

OBJECTIVE AND DESIGN VARIABLES

The objective of the optimisations is to minimise structural weight. The wing
is split in 10 spanwise laminate sections: one section covering the area between
the wing root and the first kink, three equally spaced sections covering the area
between the first and the second kink, and six equally spaced sections covering the
area between the second kink and the wing tip. Each section consists of several
laminates: two laminates for the top skin in chordwise direction, two laminates
for the bottom skin in chordwise direction, and one laminate for each of the spars.
The resulting laminate distribution contains 64 unique laminates and is shown in
Figure 8.4.

In case of the wing with predefined laminates, the design variables are the thick-
nesses of the different material patches along the wing, resulting in a total number
of 64 design variables. In case of the wing with unbalanced laminates, the design
variables consist of eight lamination parameters, describing the in-plane and out-
of-plane behaviour of the composite laminates, as introduced in Section 3.2.2,
and the thicknesses of the different material patches along the wing, resulting in
a total number of 576 design variables.

CONSTRAINTS

The lamination parameters of each laminate are constrained by 6 feasibility equa-
tions, resulting in a total number of 384 lamination parameter feasibility con-
straints. For all optimisations, the thickness is limited between 1mm and 50mm.

In order to ensure a feasible final design, additional constraints are set on the aero-
elastic stability, the local angle of attack, aileron effectiveness, structural strength,
and buckling load. As explained in Section 5.3.3, the aeroelastic stability is gov-
erned by the eigenvalues of the state matrix, resulting in the following constraint

204

UD carbon/epoxy (AS4/3501-6)

40+24 design regions

1. Predefined laminates
2. Unbalanced laminates
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Visualisation of the laminate stiffness

3

3. STRUCTURAL ANALYSIS

parameters and the in-plane stiffness properties of the final composite stacking
sequence, while sacrificing the match in out-of-plane stiffness properties.

3.2.3 LAMINATE STIFFNESS VISUALISATION

As introduced by Dillinger et al. (2013), in order to visualise the directional
stiffness distribution of a laminate defined by a set of lamination parameters, the
membrane and flexural modulus of elasticity of the laminate along a direction,
θ, are obtained from the laminate membrane stiffness matrix, A, and flexural
stiffness matrix, D. The modulus of elasticity of a laminate along an axis rotated
with an angle, θ, with respect to the laminate axis is defined by:

Em11
(θ) =

1

A−1
11 (θ)

(3.31)

Ef11(θ) =
1

D−1
11 (θ)

(3.32)

where

A−1
11 (θ) = T TA−1

11 T (3.33)

D−1
11 (θ) = T TD−1

11 T (3.34)

and

T =

⎡

⎣

cos2(θ) sin2(θ) 2 cos(θ) sin(θ)
sin2(θ) cos2(θ) −2 cos(θ) sin(θ)

− cos(θ) sin(θ) cos(θ) sin(θ) cos2(θ)− sin2(θ)

⎤

⎦ (3.35)

Figure 3.5 shows an example of the corresponding stiffness distributions for sev-
eral characteristic laminates using the composite material properties given in
Table 3.1. First of all, as expected and illustrated in Figures 3.5a to 3.5d, when all
fibres are oriented along a single fibre angle, the membrane and flexural stiffness
distribution of the laminate are equal with a maximum normalised stiffness of 1.0
aligned with the fibre angle.

Secondly, as illustrated by Figures 3.5e and 3.5f showing the normalised membrane
and flexural stiffness distribution for [30/ − 30]s and [−30/30]s laminates, the
flexural stiffness distribution of a laminate is heavily dependent upon the stacking
sequence, showing a stiffness of 0.89 aligned with the outermost plies and 0.20
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parameters and the in-plane stiffness properties of the final composite stacking
sequence, while sacrificing the match in out-of-plane stiffness properties.

3.2.3 LAMINATE STIFFNESS VISUALISATION

As introduced by Dillinger et al. (2013), in order to visualise the directional
stiffness distribution of a laminate defined by a set of lamination parameters, the
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Examples of the visualisation
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Figure 3.5: Membrane and flexural stiffness distribution for several characteristic laminates
normalised with respect to E11.
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Optimisation responses
Type # responses

Objective Mass 1

Design variables

Lamination parameters 512
Laminate thickness 64
Jig twist 20

Constraints

Lamination parameters feasibility 384
1g twist 20
Aeroelastic stability 10 per LC
Local AoA 34 per LC
Aileron effectiveness 1 per LC
Tsai-Wu failure criterion 1024 per LC
Buckling factor 4096 per LC
Total 1001 + 5156 per LC
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Load cases

ID Description EAS [m/s] Altitude [m] Mach [-] nz [-] Fuel

1 Cruise 136 11,000 0.85 1.0 70%

2 Pull up 240 3,000 0.85 2.5 80%

3 Push down 198 0 0.60 -1.0 80%

4 Dynamic 156 0 0.46 1.0 80%

Gust length [m] 50, 60, 70, 80, 90, 100, 107

Static design: 3 LC
Dynamic design: 10+ LC (multiple points in time history)
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Aeroelastically tailored results
• Typical tailored wing results

• Effect of aileron effectiveness

• Effect of 1g shape constraint and free jig shape

• Effect of MLA

• Effect of fatigue constraints

• Effect of blending

• Criticality of gust loads
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8. AEROELASTIC TAILORING OF THE COMMON RESEARCH MODEL
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Figure 8.6: Thickness distribution of the optimised CRM wing with predefined laminates.
(The spars are displayed front to rear with the front spar at the top.)

optimised wing design, a second optimisation without aileron effectiveness con-
straints has been run. The resulting thickness distribution is shown in Figure 8.8.
As can be seen, in this case, as expected, the thickness distribution shows an
increase in thickness from the wing root up to the engine location, followed by
a decrease in thickness towards the wing tip. In contrast to the optimised wing
with aileron effectiveness constraints, no thickness increase close to the ailerons
is observed. Furthermore, the leading patch is thicker across the entire wing and
not only in the first region. Consequently, as can be seen in Figure 8.9a, showing
the wing twist distribution in loadcase 2, more wash-out twist is observed in the
second region, resulting in improved manoeuvre load alleviation by shifting load
inboard, as shown in Figure 8.9b and a reduction in weight of 30.2%. As can be
expected, in this case, the design of the complete wing is driven by the strain and
buckling constraints, as can be seen in Figure 8.10.

As a final remark, it should be noted, however, that, depending on the aircraft,
outboard ailerons might not always be the active control surfaces used for roll
control. Spoilers or inboard ailerons might, for example, be more effective at
high speeds, where outboard ailerons show reduced effectiveness or even reversal.
Therefore, further investigation of the effect of aileron effectiveness constraints
on the wing designs is required before pertinent conclusions can be drawn. The
results, however, clearly show the importance of control effectiveness for the design
of aircraft wings.

8.3.2 UNBALANCED LAMINATE OPTIMISATION

The optimised stiffness and thickness distributions of the unbalanced wing design
are shown in Figure 8.11. The stiffness distribution has been visualised using
stiffness rosettes, as introduced in Section 3.2.3. The corresponding strain and
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8.3. AEROELASTIC TAILORING FOR MINIMUM WEIGHT
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Figure 8.11: Stiffness and thickness distribution for the optimised CRM wing with unbalanced
laminates. (In-plane stiffness: blue, out-of-plane stiffness: green. The spars are displayed front
to rear with the front spar at the top.)
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Figure 8.7: Strain and buckling factor distribution of the optimised CRM wing with predefined
laminates. (The spars are displayed front to rear with the front spar at the top.)
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Figure 8.12: Strain and buckling factor distribution of the optimised CRM wing with unbal-
anced laminates. (The spars are displayed front to rear with the front spar at the top.)
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Conventional optimisation
Effect of control effectiveness
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Figure 8.6: Thickness distribution of the optimised CRM wing with predefined laminates.
(The spars are displayed front to rear with the front spar at the top.)

optimised wing design, a second optimisation without aileron effectiveness con-
straints has been run. The resulting thickness distribution is shown in Figure 8.8.
As can be seen, in this case, as expected, the thickness distribution shows an
increase in thickness from the wing root up to the engine location, followed by
a decrease in thickness towards the wing tip. In contrast to the optimised wing
with aileron effectiveness constraints, no thickness increase close to the ailerons
is observed. Furthermore, the leading patch is thicker across the entire wing and
not only in the first region. Consequently, as can be seen in Figure 8.9a, showing
the wing twist distribution in loadcase 2, more wash-out twist is observed in the
second region, resulting in improved manoeuvre load alleviation by shifting load
inboard, as shown in Figure 8.9b and a reduction in weight of 30.2%. As can be
expected, in this case, the design of the complete wing is driven by the strain and
buckling constraints, as can be seen in Figure 8.10.

As a final remark, it should be noted, however, that, depending on the aircraft,
outboard ailerons might not always be the active control surfaces used for roll
control. Spoilers or inboard ailerons might, for example, be more effective at
high speeds, where outboard ailerons show reduced effectiveness or even reversal.
Therefore, further investigation of the effect of aileron effectiveness constraints
on the wing designs is required before pertinent conclusions can be drawn. The
results, however, clearly show the importance of control effectiveness for the design
of aircraft wings.

8.3.2 UNBALANCED LAMINATE OPTIMISATION

The optimised stiffness and thickness distributions of the unbalanced wing design
are shown in Figure 8.11. The stiffness distribution has been visualised using
stiffness rosettes, as introduced in Section 3.2.3. The corresponding strain and
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Figure 8.8: Thickness distribution for the optimised CRM wing with predefined laminates
without aileron effectiveness constraints.

buckling factor distributions for the different loadcases are shown in Figure 8.12.
Based on these results, three wing regions can be identified: (i) the buckling
critical region close to the wing root, (ii) the region from the buckling critical
region up to the engine location, and (iii) the region from the engine location up
to the wing tip.

When comparing the buckling critical region5 to the other wing regions, first of
all, it is interesting to note that the buckling critical region, as expected, is dom-
inated by the out-of-plane properties, resulting in pronounced optimal stiffness
directions for the out-of-plane properties, while sacrificing the in-plane properties.
The other two wing regions, on the other hand, are dominated by the in-plane
properties that drive the global wing response and, consequently, pronounced
stiffness directions are observed for the in-plane properties, while sacrificing the
out-of-plane properties.

When looking at the stiffness distribution of the top skin close to the wing root,
a significantly different out-of-plane stiffness is observed for the leading patch
than for the trailing patch. In case of the leading patch, the buckling response
is dominated by in-plane compression in loadcase 2, resulting in optimal cross-
ply stiffness properties, while in case of the trailing patch, the buckling response
is dominated by shear, resulting in a preferred stiffness direction resisting the
diagonal shear buckling pattern. This illustrates the potential use of aeroelastic
tailoring to optimise the stiffness distribution as required.

When looking at the second wing region outboard of the buckling critical region,
the wing design is clearly strain driven, as can be concluded from Figure 8.12,
and the in-plane stiffness is oriented along the wing axis to maximise the load
carrying capabilities of the wing, thereby minimising the wing weight.

5the middle and rear spar and the top skin close to the wing root
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6,877 kg

Without constraint
4,803 kg (-30%)

Predefined laminates



75

Aeroelastically tailored results
• Typical tailored wing results

• Effect of aileron effectiveness

• Effect of 1g shape constraint and free jig shape

• Effect of MLA

• Effect of fatigue constraints

• Effect of blending

• Criticality of gust loads
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2.5g twist
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8.4. ON THE IMPORTANCE OF THE JIG TWIST DISTRIBUTION FOR WING

STRUCTURAL DESIGN
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(a) Comparison of the jig twist between Klimmek (2014)
and the optimised CRM wings including a cruise twist
constraint. The cruise target shape is shown to illustrate
the corresponding twist deformations.
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(b) Comparison of the twist distribution of the optimised
wings in cruise flight to the target CRM twist distribution.
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(c) Twist distribution of the optimised wings for loadcase
2 under 2.5g loads.

Figure 8.17: Twist distributions for the optimised CRM wings including a cruise twist con-
straint.
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Aeroelastically tailored results
• Typical tailored wing results

• Effect of aileron effectiveness

• Effect of 1g shape constraint and free jig shape

• Effect of MLA

• Effect of fatigue constraints

• Effect of blending

• Criticality of gust loads
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Predefined jig shape
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8.3. AEROELASTIC TAILORING FOR MINIMUM WEIGHT
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Figure 8.5: CRM jig shape as identified by Klimmek (2014).

Table 8.10: Optimisation setup for the “conventional” optimisation.

Objective Minimum weight

Design variables Lamination parameters
Laminate thickness

Constraints Laminate feasibility
Aeroelastic stability

Maximum local angle of attack
Tsai-Wu strain failure criterion

Buckling

Optimiser GCMMA
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Figure 8.5: CRM jig shape as identified by Klimmek (2014).

Table 8.10: Optimisation setup for the “conventional” optimisation.

Objective Minimum weight

Design variables Lamination parameters
Laminate thickness

Constraints Laminate feasibility
Aeroelastic stability

Maximum local angle of attack
Tsai-Wu strain failure criterion

Buckling

Optimiser GCMMA

215
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Including free jig twist
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8. AEROELASTIC TAILORING OF THE COMMON RESEARCH MODEL
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Figure 8.20: Stiffness and thickness distribution for the optimised CRM wing with unbal-
anced laminates with a free jig twist distribution and a cruise twist constraint. The stiffness
distribution for the wing with unbalanced laminates with a fixed jig twist distribution without a
cruise twist constraint is displayed in red for comparison. (In-plane stiffness: blue, out-of-plane
stiffness: green. The spars are displayed front to rear with the front spar at the top.)
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Figure 8.11: Stiffness and thickness distribution for the optimised CRM wing with unbalanced
laminates. (In-plane stiffness: blue, out-of-plane stiffness: green. The spars are displayed front
to rear with the front spar at the top.)
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Optimised jig shape
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Table 8.10: Optimisation setup for the “conventional” optimisation.

Objective Minimum weight

Design variables Lamination parameters
Laminate thickness

Constraints Laminate feasibility
Aeroelastic stability

Maximum local angle of attack
Tsai-Wu strain failure criterion

Buckling

Optimiser GCMMA
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(a) Comparison of the jig twist between Klimmek (2014)
and the optimised CRM wings including a cruise twist
constraint. The cruise target shape is shown to illustrate
the corresponding twist deformations.
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(b) Comparison of the twist distribution of the optimised
wings in cruise flight to the target CRM twist distribution.
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(c) Twist distribution of the optimised wings for loadcase
2 under 2.5g loads.

Figure 8.17: Twist distributions for the optimised CRM wings including a cruise twist con-
straint.
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(a) Comparison of the jig twist between Klimmek (2014)
and the optimised CRM wings including a cruise twist
constraint. The cruise target shape is shown to illustrate
the corresponding twist deformations.
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(b) Comparison of the twist distribution of the optimised
wings in cruise flight to the target CRM twist distribution.
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(c) Twist distribution of the optimised wings for loadcase
2 under 2.5g loads.

Figure 8.17: Twist distributions for the optimised CRM wings including a cruise twist con-
straint.
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Aeroelastically tailored results
• Typical tailored wing results

• Effect of aileron effectiveness

• Effect of 1g shape constraint and free jig shape

• Effect of MLA

• Effect of fatigue constraints

• Effect of blending

• Criticality of gust loads
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Active control surfaces

8

8.6. OPTIMAL WING STRUCTURAL DESIGN BY COMBINING AEROELASTIC

TAILORING AND MORPHING

2.94m

22.04m

Figure 8.33: Wing planform highlighting the trailing edge camber morphing region.
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Figure 8.34: Camber morphing airfoils at 3.438m span.

elastically tailored wings become more susceptible to dynamic loads. Therefore,
dynamic loads should be accounted for in the design of aeroelastically tailored
aircraft wings.

8.6 OPTIMAL WING STRUCTURAL DESIGN BY COMBIN-

ING AEROELASTIC TAILORING AND MORPHING

For the final design study, a range of trailing edge camber morphing mechanisms
is installed on the NASA CRM wing. As discussed in Section 2.3, trailing edge
morphing mechanisms provide great potential for combining the benefits of aero-
elastic tailoring with morphing. The camber morphing mechanisms are mounted
to the rear spar of the wingbox between the wing-fuselage connection at 2.94m
span and the ailerons at 22.04m span, as shown in Figure 8.33. Each camber
morphing mechanism can morph in a range of ±10 deg deflection modelled by
means of a smooth deformation of the airfoil camber line based on a quadratic
polynomial. The resulting camber morphing deformation for the first camber
morphing location is, for example, shown in Figure 8.34.

The corresponding optimisation setup is presented in Section 8.6.1, followed by a
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aircraft wings.

8.6 OPTIMAL WING STRUCTURAL DESIGN BY COMBIN-

ING AEROELASTIC TAILORING AND MORPHING

For the final design study, a range of trailing edge camber morphing mechanisms
is installed on the NASA CRM wing. As discussed in Section 2.3, trailing edge
morphing mechanisms provide great potential for combining the benefits of aero-
elastic tailoring with morphing. The camber morphing mechanisms are mounted
to the rear spar of the wingbox between the wing-fuselage connection at 2.94m
span and the ailerons at 22.04m span, as shown in Figure 8.33. Each camber
morphing mechanism can morph in a range of ±10 deg deflection modelled by
means of a smooth deformation of the airfoil camber line based on a quadratic
polynomial. The resulting camber morphing deformation for the first camber
morphing location is, for example, shown in Figure 8.34.

The corresponding optimisation setup is presented in Section 8.6.1, followed by a
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Control deflections under 2.5g load

8

8.6. OPTIMAL WING STRUCTURAL DESIGN BY COMBINING AEROELASTIC

TAILORING AND MORPHING
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(a) Optimal trailing edge camber distribution for loadcase
2.
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(b) Optimal trailing edge camber distribution for load-
case 3.

Figure 8.35: Optimal trailing edge camber distribution for the optimised CRM wings including
trailing edge camber morphing.
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Thickness distribution

8

8.6. OPTIMAL WING STRUCTURAL DESIGN BY COMBINING AEROELASTIC

TAILORING AND MORPHING
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(a) Top skin.
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(b) Bottom skin.

0 5 10 15 20 25 30

Thickness (mm)

(c) Spars.

Figure 8.37: Stiffness and thickness distribution for the optimised CRM wing with unbalanced
laminates including trailing edge camber morphing. The stiffness distribution for the wing
with unbalanced laminates excluding trailing edge camber morphing is displayed in red for
comparison. (In-plane stiffness: blue, out-of-plane stiffness: green. The spars are displayed
front to rear with the front spar at the top.)
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Unbalanced laminates

8

8. AEROELASTIC TAILORING OF THE COMMON RESEARCH MODEL
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Figure 8.38: Thickness comparison of the weight optimised CRM wing with unbalanced lam-
inates including trailing edge camber morphing to the wing excluding trailing edge camber
morphing. (The spars are displayed front to rear with the front spar at the top.)

phing, both the wings with unbalanced laminates and the wings with predefined
laminates show a significant reduction in weight, as can be seen in Table 8.11 on
page 210 and can be concluded from Figures 8.36b and 8.38. In case of the wing
with predefined laminates including aileron effectiveness constraints, the influence
of the aileron effectiveness constraints can clearly be observed, resulting in a sig-
nificantly smaller weight reduction of only 6.6% compared to around 30% for the
other wings.

As can be seen in Figure 8.37, the primary stiffness direction of the top and bottom
skin of the wing design with unbalanced laminates including trailing edge camber
morphing is oriented further aft than the wing design excluding trailing edge
camber morphing. This indicates reduced load carrying requirements on the wing
skins, because of trailing edge camber morphing, such that aeroelastic tailoring
can be used more effectively to satisfy the aileron effectiveness constraints and,
consequently, reduce the wing weight.

Finally, as can be concluded from the strain and buckling response of the wing
with unbalanced laminates shown in Figure 8.40, combining aeroelastic tailoring
and morphing allows for wing designs that are optimal across all flight conditions
over large areas of the wing, thereby improving the efficiency of the wing structure,
resulting in a wing design that, in this case, is even critically designed under cruise
conditions, showing the potential of combined aeroelastic tailoring and morphing
for optimally designed wings across a range of flight conditions.

However, before drawing definitive conclusions on the potential benefits of com-
bining aeroelastic tailoring and morphing, one remark needs to be made about the
design and operation of wings with morphing mechanisms. When using morphing
mechanisms for load alleviation, care should be taken to ensure aircraft safety in
case the morphing mechanisms fail.
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Without MLA
4,784 kg
With MLA
3,215 kg (-33%)
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Strain and buckling
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Aeroelastically tailored results
• Typical tailored wing results

• Effect of aileron effectiveness

• Effect of 1g shape constraint and free jig shape

• Effect of MLA

• Effect of fatigue constraints

• Effect of blending

• Criticality of gust loads
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Skin thickness results

(a) Top Skin without fatigue model (b) Top Skin with fatigue model

(c) Bottom Skin without fatigue model (d) Bottom Skin with fatigue model

(e) Spars without fatigue model (f) Spars with fatigue model

Figure 15: Sti↵ness and thickness distribution for the optimized CRM wing (In-plane sti↵ness: black, out-of-plane
sti↵ness: red.)
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(a) Top Skin without fatigue model (b) Top Skin with fatigue model

(c) Bottom Skin without fatigue model (d) Bottom Skin with fatigue model

(e) Spars without fatigue model (f) Spars with fatigue model

Figure 15: Sti↵ness and thickness distribution for the optimized CRM wing (In-plane sti↵ness: black, out-of-plane
sti↵ness: red.)
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Constraint values top skin

(a) Top Skin without fatigue model (b) Top Skin with fatigue model

(c) Bottom Skin without fatigue model (d) Bottom Skin with fatigue model

(e) Spars without fatigue model (f) Spars with fatigue model

Figure 14: Value of the critical constraints on the optimized CRM wing.
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Constraint values bottom skin
(a) Top Skin without fatigue model (b) Top Skin with fatigue model

(c) Bottom Skin without fatigue model (d) Bottom Skin with fatigue model

(e) Spars without fatigue model (f) Spars with fatigue model

Figure 14: Value of the critical constraints on the optimized CRM wing.
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Mass comparison

Type Tailored Units
With fatigue model 9,416 kg
Without fatigue model 12,129 kg
Difference (%) 22 %
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Aeroelastically tailored results
• Typical tailored wing results

• Effect of aileron effectiveness

• Effect of 1g shape constraint and free jig shape

• Effect of MLA

• Effect of fatigue constraints

• Effect of blending

• Criticality of gust loads
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Are gust loads sizing?
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Gust loads critical?

Predefined

Unbalanced
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Critical load cases and gust lengths
Unbalanced laminates

8

8.5. ON THE IMPORTANCE OF DISCRETE GUST LOADS IN WING

STRUCTURAL DESIGN
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(a) Critical loadcases.
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(b) Critical gust lengths for loadcase 4.

Figure 8.31: Critical loadcases and corresponding gust lengths for the dynamically optimised
CRM wing with unbalanced laminates. (The spars are displayed front to rear with the front
spar at the top.)
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(b) Critical gust lengths for loadcase 4.

Figure 8.31: Critical loadcases and corresponding gust lengths for the dynamically optimised
CRM wing with unbalanced laminates. (The spars are displayed front to rear with the front
spar at the top.)
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Without DL
4,517 kg

With DL
4,850 kg (+7%)
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What’s next in aeroelastic tailoring

• More focus on high fidelity methods.

• Include control into the design.

• Coupling to other disciplines (MDAO).

• More advanced measuring techniques, also in flight.

• Scaled flight testing.

• Industrialisation of the technology – link to advanced manufacturing.

• Novel (composite) materials.


